PWFNet: Pyramidal Wavelet–Frequency Attention Network for Road Extraction

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:Remote Sensing vol. 17, no. 16 (2025), p. 2895-2920
Váldodahkki: Zong Jinkun
Eará dahkkit: Sun, Yonghua, Wang Ruozeng, Xu Dinglin, Yang, Xue, Zhao, Xiaolin
Almmustuhtton:
MDPI AG
Fáttát:
Liŋkkat:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3244060246
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17162895  |2 doi 
035 |a 3244060246 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Zong Jinkun  |u Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China; 2230902168@cnu.edu.cn (J.Z.); 2230902115@cnu.edu.cn (R.W.); 2240902114@cnu.edu.cn (D.X.); 2240902168@cnu.edu.cn (X.Y.) 
245 1 |a PWFNet: Pyramidal Wavelet–Frequency Attention Network for Road Extraction 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Road extraction from remote sensing imagery plays a critical role in applications such as autonomous driving, urban planning, and infrastructure development. Although deep learning methods have achieved notable progress, current approaches still struggle with complex backgrounds, varying road widths, and strong texture interference, often leading to fragmented road predictions or the misclassification of background regions. Given that roads typically exhibit smooth low-frequency characteristics while background clutter tends to manifest in mid- and high-frequency ranges, incorporating frequency-domain information can enhance the model’s structural perception and discrimination capabilities. To address these challenges, we propose a novel frequency-aware road extraction network, termed PWFNet, which combines frequency-domain modeling with multi-scale feature enhancement. PWFNet comprises two key modules. First, the Pyramidal Wavelet Convolution (PWC) module employs multi-scale wavelet decomposition fused with localized convolution to accurately capture road structures across various spatial resolutions. Second, the Frequency-aware Adjustment Module (FAM) partitions the Fourier spectrum into multiple frequency bands and incorporates a spatial attention mechanism to strengthen low-frequency road responses while suppressing mid- and high-frequency background noise. By integrating complementary modeling from both spatial and frequency domains, PWFNet significantly improves road continuity, edge clarity, and robustness under complex conditions. Experiments on the DeepGlobe and CHN6-CUG road datasets demonstrate that PWFNet achieves IoU improvements of 3.8% and 1.25% over the best-performing baseline methods, respectively. In addition, we conducted cross-region transfer experiments by directly applying the trained model to remote sensing images from different geographic regions and at varying resolutions to assess its generalization capability. The results demonstrate that PWFNet maintains the continuity of main and branch roads and preserves edge details in these transfer scenarios, effectively reducing false positives and missed detections. This further validates its practicality and robustness in diverse real-world environments. 
653 |a Accuracy 
653 |a Deep learning 
653 |a Urban planning 
653 |a Wavelet transforms 
653 |a Modelling 
653 |a Convolution 
653 |a Roads & highways 
653 |a Remote sensing 
653 |a Frequency ranges 
653 |a Decomposition 
653 |a Attention 
653 |a Frequencies 
653 |a Architecture 
653 |a Modules 
653 |a Frequency dependence 
653 |a Robustness 
653 |a Background noise 
653 |a Machine learning 
653 |a Vegetation 
653 |a Fourier transforms 
653 |a Frequency domain analysis 
653 |a Connectivity 
653 |a Clutter 
653 |a Morphology 
700 1 |a Sun, Yonghua  |u Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China; 2230902168@cnu.edu.cn (J.Z.); 2230902115@cnu.edu.cn (R.W.); 2240902114@cnu.edu.cn (D.X.); 2240902168@cnu.edu.cn (X.Y.) 
700 1 |a Wang Ruozeng  |u Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China; 2230902168@cnu.edu.cn (J.Z.); 2230902115@cnu.edu.cn (R.W.); 2240902114@cnu.edu.cn (D.X.); 2240902168@cnu.edu.cn (X.Y.) 
700 1 |a Xu Dinglin  |u Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China; 2230902168@cnu.edu.cn (J.Z.); 2230902115@cnu.edu.cn (R.W.); 2240902114@cnu.edu.cn (D.X.); 2240902168@cnu.edu.cn (X.Y.) 
700 1 |a Yang, Xue  |u Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China; 2230902168@cnu.edu.cn (J.Z.); 2230902115@cnu.edu.cn (R.W.); 2240902114@cnu.edu.cn (D.X.); 2240902168@cnu.edu.cn (X.Y.) 
700 1 |a Zhao, Xiaolin  |u CCCC Xingyu Technology Co., Ltd., Beijing 102200, China; zhaoxiaolin@ccccltd.cn 
773 0 |t Remote Sensing  |g vol. 17, no. 16 (2025), p. 2895-2920 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244060246/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244060246/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244060246/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch