An Enhanced NSGA-II Driven by Deep Reinforcement Learning to Mixed Flow Assembly Workshop Scheduling System with Constraints of Continuous Processing and Mold Changing

Guardado en:
Detalles Bibliográficos
Publicado en:Systems vol. 13, no. 8 (2025), p. 659-679
Autor principal: Yang Bihao
Otros Autores: Chen, Jie, Xiao Xiongxin, Li, Sidi, Teng, Ren
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3244062869
003 UK-CbPIL
022 |a 2079-8954 
024 7 |a 10.3390/systems13080659  |2 doi 
035 |a 3244062869 
045 2 |b d20250101  |b d20251231 
084 |a 231636  |2 nlm 
100 1 |a Yang Bihao  |u School of Economics and Management, Central South University of Forestry and Technology, Changsha 410004, China; 20221100321@csuft.edu.cn (B.Y.); 20231100332@csuft.edu.cn (J.C.); 20241100380@csuft.edu.cn (X.X.) 
245 1 |a An Enhanced NSGA-II Driven by Deep Reinforcement Learning to Mixed Flow Assembly Workshop Scheduling System with Constraints of Continuous Processing and Mold Changing 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Mixed-flow assembly lines are widely employed in industrial manufacturing to handle diverse production tasks. For mixed flow assembly lines that involve mold changes and greater processing difficulties, there are currently two approaches: batch production and production according to order sequence. The first approach struggles to meet the processing constraints of workpieces with higher production difficulty, while the second approach requires the development of suitable scheduling schemes to balance mold changes and continuous processing. Therefore, under the second approach, developing an excellent scheduling scheme is a challenging problem. This study addresses the mixed-flow assembly shop scheduling problem, considering continuous processing and mold-changing constraints, by developing a multi-objective optimization model to minimize additional production time and customer waiting time. As this NP-hard problem poses significant challenges in solution space exploration, the conventional NSGA-II algorithm suffers from limited local search capability. To address this, we propose an enhanced NSGA-II algorithm (RLVNS-NSGA-II) integrating deep reinforcement learning. Our approach combines multiple neighborhood search operators with deep reinforcement learning, which dynamically utilizes population diversity and objective function data to guide and strengthen local search. Simulation experiments confirm that the proposed algorithm surpasses existing methods in local search performance. Compared to VNS-NSGA-II and SVNS-NSGA-II, the RLVNS-NSGA-II algorithm achieved hypervolume improvements ranging from 19.72% to 42.88% and 12.63% to 31.19%, respectively. 
653 |a Work stations 
653 |a Space exploration 
653 |a Integer programming 
653 |a Workpieces 
653 |a Deep learning 
653 |a Molds 
653 |a Optimization 
653 |a Batch processing 
653 |a Multiple objective analysis 
653 |a Manufacturing 
653 |a Batch production 
653 |a Heuristic 
653 |a Efficiency 
653 |a Optimization models 
653 |a Assembly lines 
653 |a Scheduling 
653 |a Continuous casting 
653 |a Operators (mathematics) 
653 |a Genetic algorithms 
653 |a Searching 
653 |a Solution space 
653 |a Algorithms 
653 |a Constraints 
700 1 |a Chen, Jie  |u School of Economics and Management, Central South University of Forestry and Technology, Changsha 410004, China; 20221100321@csuft.edu.cn (B.Y.); 20231100332@csuft.edu.cn (J.C.); 20241100380@csuft.edu.cn (X.X.) 
700 1 |a Xiao Xiongxin  |u School of Economics and Management, Central South University of Forestry and Technology, Changsha 410004, China; 20221100321@csuft.edu.cn (B.Y.); 20231100332@csuft.edu.cn (J.C.); 20241100380@csuft.edu.cn (X.X.) 
700 1 |a Li, Sidi  |u School of Foreign Languages, Central South University of Forestry and Technology, Changsha 410004, China; lisidi@csuft.edu.cn 
700 1 |a Teng, Ren  |u School of Economics and Management, Central South University of Forestry and Technology, Changsha 410004, China; 20221100321@csuft.edu.cn (B.Y.); 20231100332@csuft.edu.cn (J.C.); 20241100380@csuft.edu.cn (X.X.) 
773 0 |t Systems  |g vol. 13, no. 8 (2025), p. 659-679 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244062869/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244062869/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244062869/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch