Comparative Analysis of the Gardner Equation in Plasma Physics Using Analytical and Neural Network Methods

Guardado en:
Detalles Bibliográficos
Publicado en:Symmetry vol. 17, no. 8 (2025), p. 1218-1240
Autor principal: Majeed Zain
Otros Autores: Jhangeer Adil, Mahomed, F M, Almusawa Hassan, Zaman, F D
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3244064203
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17081218  |2 doi 
035 |a 3244064203 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Majeed Zain  |u Abdus Salam School of Mathematical Sciences, Government College University, Lahore 54600, Pakistan; zain.majeed@live.com (Z.M.); fazal.mahomed@wits.ac.za (F.M.M.) 
245 1 |a Comparative Analysis of the Gardner Equation in Plasma Physics Using Analytical and Neural Network Methods 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In the present paper, a mathematical analysis of the Gardner equation with varying coefficients has been performed to give a more realistic model of physical phenomena, especially in regards to plasma physics. First, a Lie symmetry analysis was carried out, as a result of which a symmetry classification following the different representations of the variable coefficients was systematically derived. The reduced ordinary differential equation obtained is solved using the power-series method and solutions to the equation are represented graphically to give an idea of their dynamical behavior. Moreover, a fully connected neural network has been included as an efficient computation method to deal with the complexity of the reduced equation, by using traveling-wave transformation. The validity and correctness of the solutions provided by the neural networks have been rigorously tested and the solutions provided by the neural networks have been thoroughly compared with those generated by the Runge–Kutta method, which is a conventional and well-recognized numerical method. The impact of a variation in the loss function of different coefficients has also been discussed, and it has also been found that the dispersive coefficient affects the convergence rate of the loss contribution considerably compared to the other coefficients. The results of the current work can be used to improve knowledge on the nonlinear dynamics of waves in plasma physics. They also show how efficient it is to combine the approaches, which consists in the use of analytical and semi-analytical methods and methods based on neural networks, to solve nonlinear differential equations with variable coefficients of a complex nature. 
653 |a Plasma 
653 |a Mathematical analysis 
653 |a Fluid dynamics 
653 |a Water waves 
653 |a Symmetry 
653 |a Runge-Kutta method 
653 |a Numerical analysis 
653 |a Plasma physics 
653 |a Numerical methods 
653 |a Optics 
653 |a Propagation 
653 |a Physics 
653 |a Partial differential equations 
653 |a Neural networks 
653 |a Charged particles 
653 |a Nonlinear differential equations 
653 |a Traveling waves 
653 |a Classification 
653 |a Energy dissipation 
653 |a Methods 
653 |a Complexity 
653 |a Dynamical systems 
653 |a Acoustics 
653 |a Graphical representations 
653 |a Fluid mechanics 
653 |a Nonlinear dynamics 
653 |a Ordinary differential equations 
700 1 |a Jhangeer Adil  |u IT4Innovations, VSB—Technical University of Ostrava, Poruba, 708 00 Ostrava, Czech Republic; adil.jhangeer@vsb.cz 
700 1 |a Mahomed, F M  |u Abdus Salam School of Mathematical Sciences, Government College University, Lahore 54600, Pakistan; zain.majeed@live.com (Z.M.); fazal.mahomed@wits.ac.za (F.M.M.) 
700 1 |a Almusawa Hassan  |u Department of Mathematics, College of Sciences, Jazan University, Jazan 45142, Saudi Arabia 
700 1 |a Zaman, F D  |u School of Mathematics, University of the Witwatersrand, Johannesburg 2050, South Africa; fiaz.zaman@wits.ac.za 
773 0 |t Symmetry  |g vol. 17, no. 8 (2025), p. 1218-1240 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244064203/abstract/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3244064203/fulltextwithgraphics/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244064203/fulltextPDF/embedded/CH9WPLCLQHQD1J4S?source=fedsrch