Feasibility of Conditional Variational Autoencoders for Phase-Averaged Synthetic Time Series

Guardado en:
Detalles Bibliográficos
Publicado en:European Conference on Cyber Warfare and Security (Jun 2025), p. 614-622
Autor principal: Rüb, Matthias
Otros Autores: Grüber, Jens, Schotten, Hans
Publicado:
Academic Conferences International Limited
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3244089444
003 UK-CbPIL
035 |a 3244089444 
045 2 |b d20250601  |b d20250630 
084 |a 142231  |2 nlm 
100 1 |a Rüb, Matthias  |u Intelligent Networks Research Group, German Research Center for Artificial Intelligence, Kaiserslautern, Germany 
245 1 |a Feasibility of Conditional Variational Autoencoders for Phase-Averaged Synthetic Time Series 
260 |b Academic Conferences International Limited  |c Jun 2025 
513 |a Conference Proceedings 
520 3 |a In cybersecurity, synthetic data is beneficial for testing, training, and enhancing Al-driven defense systems without compromising sensitive information. Critical sectors like telecommunications, finance, energy, and healthcare generate vast amounts of time-series data, often requiring reduction methods such as phase-averaging to manage scale. However, this can obscure essential features, impacting anomaly detection and threat modeling. This study explores whether conditional Variational Autoencoders (cVAEs) can generate high-quality synthetic data when given only phase-averaged time series for training. Results on a biometric use-case show that cVAEs preserve intrinsic properties of reduced data, making it usable for classification and to a more restricted degree as training data in downstream cybersecurity applications. 
653 |a Cybersecurity 
653 |a Gait 
653 |a Methods 
653 |a Datasets 
653 |a Anomalies 
653 |a Artificial intelligence 
653 |a Time series 
653 |a Biometrics 
653 |a Synthetic data 
653 |a Case studies 
653 |a Classification 
653 |a Training 
653 |a Health services 
653 |a Property 
653 |a Telecommunications 
653 |a Data quality 
653 |a Health care 
653 |a Feasibility 
653 |a Data 
700 1 |a Grüber, Jens  |u Intelligent Networks Research Group, German Research Center for Artificial Intelligence, Kaiserslautern, Germany 
700 1 |a Schotten, Hans  |u Intelligent Networks Research Group, German Research Center for Artificial Intelligence, Kaiserslautern, Germany 
773 0 |t European Conference on Cyber Warfare and Security  |g (Jun 2025), p. 614-622 
786 0 |d ProQuest  |t Political Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244089444/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3244089444/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244089444/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch