Malware Detection Using Dynamic Graph Neural Networks

Guardat en:
Dades bibliogràfiques
Publicat a:European Conference on Cyber Warfare and Security (Jun 2025), p. 830-838
Autor principal: Kulkarni, Pushkaraj
Altres autors: OShaughnessy, Stephen
Publicat:
Academic Conferences International Limited
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3244089456
003 UK-CbPIL
035 |a 3244089456 
045 2 |b d20250601  |b d20250630 
084 |a 142231  |2 nlm 
100 1 |a Kulkarni, Pushkaraj 
245 1 |a Malware Detection Using Dynamic Graph Neural Networks 
260 |b Academic Conferences International Limited  |c Jun 2025 
513 |a Conference Proceedings 
520 3 |a The increasing complexity and sophistication of malware pose significant challenges to traditional detection techniques. Conventional methods like signature-based detection are ineffective against advanced threats such as polymorphic and zero-day malware. This research investigates the application of Dynamic Graph Neural Networks (DGNNs) for malware detection using a dataset of API call sequences. DGNNs, an advanced form of Graph Neural Networks, are capable of modeling dynamic graphs, capturing both the temporal and structural evolution of API interactions. Using these strengths, the study develops and evaluates a DGNN-based framework designed to effectively distinguish between benign and malicious behavior in real time, demonstrating its suitability for detecting complex, evolving malware patterns. The results show that DGNN outperform traditional machine learning models in detecting complex malware patterns, achieving high accuracy of up to 97%, Fl scores of up to 98% in unbalanced datasets, and competitive results in balanced datasets. The models also achieved ROC-AUC scores exceeding 97% in specific configurations, highlighting their effectiveness in identifying advanced malware pat- terns and resilience against novel threats. Although challenges in scalability and computational complexity remain, this work proposes potential solutions to enhance practical implementation. These findings highlight the potential of DGNNs to transform malware detection and significantly improve endpoint security, making them a promising tool for addressing the evolving challenges of modern cybersecurity. 
653 |a Machine learning 
653 |a Behavior 
653 |a Datasets 
653 |a Accuracy 
653 |a Artificial intelligence 
653 |a Graphs 
653 |a Graph neural networks 
653 |a Malware 
653 |a Neural networks 
653 |a Cybersecurity 
653 |a Application programming interface 
653 |a Complexity 
653 |a Suitability 
653 |a Threats 
653 |a Sophistication 
653 |a Sequences 
653 |a Resilience 
653 |a Networks 
653 |a Research applications 
700 1 |a OShaughnessy, Stephen 
773 0 |t European Conference on Cyber Warfare and Security  |g (Jun 2025), p. 830-838 
786 0 |d ProQuest  |t Political Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244089456/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3244089456/fulltext/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244089456/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch