Building Trust in Smart TVs: AI-Enhanced Cybersecurity for User Privacy and Ethical Monetization

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:European Conference on Cyber Warfare and Security (Jun 2025), p. 647-656
المؤلف الرئيسي: Singh, Nakul
مؤلفون آخرون: Kumar, Shreyas, Singh, Tripti, Kumar, Pratyush
منشور في:
Academic Conferences International Limited
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3244089532
003 UK-CbPIL
035 |a 3244089532 
045 2 |b d20250601  |b d20250630 
084 |a 142231  |2 nlm 
100 1 |a Singh, Nakul  |u AI and Cybersecurity Practitioner, San Francisco, USA 
245 1 |a Building Trust in Smart TVs: AI-Enhanced Cybersecurity for User Privacy and Ethical Monetization 
260 |b Academic Conferences International Limited  |c Jun 2025 
513 |a Conference Proceedings 
520 3 |a As Smart TVs evolve into central hubs for IoT ecosystems, ensuring user trust through robust cybersecurity and ethical monetization practices has become paramount. This paper explores the integration of AI-driven cybersecurity features into Smart TVs, enabling them to safeguard user privacy and secure connected devices such as thermostats, smart speakers and home automation systems. By leveraging advanced AI techniques, including anomaly detection, behavioral analytics and federated learning, Smart TVs can monitor network traffic, detect vulnerabilities and mitigate potential cyber threats in real-time. For example, these systems can proactively identify and block IoT-based botnet attacks like Mirai, preventing unauthorized access to home networks. Additionally, AI-driven device typing enables Smart TVs to accurately classify and optimize the performance of connected devices, enhancing interoperability and user experience. The transformation of Smart TVs into trusted IoT hubs also presents significant monetization opportunities for manufacturers. Ethical monetization strategies, such as offering premium AI-powered security subscriptions, personalized automation services and bundled IoT device packages can generate revenue while prioritizing user trust. Privacy-preserving AI techniques such as federated learning and edge computing ensure that insights are monetized without collecting raw user data. Cross-selling and upselling opportunities arise as manufacturers integrate Smart TVs with complementary smart home products, fostering a seamless, secure ecosystem. Additionally, partnerships with cybersecurity firms and IoT developers further expand revenue streams, ensuring sustainable growth. Unlike traditional IoT security solutions, AI-powered Smart TVs provide native, real-time protection without requiring additional hardware, positioning them as the next frontier in home cybersecurity. As the industry advances, embedding privacy by design principles and offering users greater control over their data will be crucial in maintaining trust. This paper highlights how AI-enhanced cybersecurity and responsible monetization can redefine Smart TVs as both intelligent home automation hubs and ethical revenue generators, ensuring security, privacy, and user satisfaction while driving industry growth. 
653 |a Subscriptions 
653 |a Behavior 
653 |a Interoperability 
653 |a Internet of Things 
653 |a User experience 
653 |a Threats 
653 |a Trends 
653 |a Communications traffic 
653 |a Edge computing 
653 |a Cybersecurity 
653 |a Smart buildings 
653 |a Malware 
653 |a Automation 
653 |a Privacy 
653 |a Ethics 
653 |a Ecosystems 
653 |a Use statistics 
653 |a Hubs 
653 |a Monetization 
653 |a Streaming services 
653 |a User satisfaction 
653 |a Smart houses 
653 |a Connectivity 
653 |a Household goods 
653 |a Anomalies 
653 |a Advertising 
653 |a Streaming media 
653 |a Trustworthiness 
653 |a Real time 
653 |a Federated learning 
653 |a Security systems 
653 |a Learning 
653 |a Unauthorized 
653 |a Keyboarding 
653 |a Security 
653 |a Revenue 
653 |a Intelligence 
653 |a Positioning 
653 |a Trust 
653 |a Transformation 
653 |a Prioritizing 
653 |a Satisfaction 
653 |a Partnerships 
700 1 |a Kumar, Shreyas  |u Department of Computer Science and Engineering, Texas A&M University, USA 
700 1 |a Singh, Tripti  |u AI and Software Engineering Practitioner, San Francisco, USA 
700 1 |a Kumar, Pratyush  |u Independent Researcher, Noida, India 
773 0 |t European Conference on Cyber Warfare and Security  |g (Jun 2025), p. 647-656 
786 0 |d ProQuest  |t Political Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244089532/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3244089532/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244089532/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch