An Architecture for Voice-Based Authentication and Authorization with Deepfake Detection

Na minha lista:
Detalhes bibliográficos
Publicado no:European Conference on Cyber Warfare and Security (Jun 2025), p. 425-436
Autor principal: da Silva, Fabian Martins
Outros Autores: Balamurugan, Baladithya, Hakim, John
Publicado em:
Academic Conferences International Limited
Assuntos:
Acesso em linha:Citation/Abstract
Full Text
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3244089539
003 UK-CbPIL
035 |a 3244089539 
045 2 |b d20250601  |b d20250630 
084 |a 142231  |2 nlm 
100 1 |a da Silva, Fabian Martins 
245 1 |a An Architecture for Voice-Based Authentication and Authorization with Deepfake Detection 
260 |b Academic Conferences International Limited  |c Jun 2025 
513 |a Conference Proceedings 
520 3 |a Voice biometrics offer a convenient and secure authentication method, but the rise of sophisticated deepfake technology presents a significant challenge. This work presents an architecture for voice-based authentication and authorization that integrates deepfake detection to mitigate this risk. This paper explores the design of this cloud-native architecture, leveraging Amazon Web Services (AWS) services for orchestration and scalability. The system combines cutting-edge Al models for robust voice-printing and real-time deepfake analysis. We discuss multi-factor authentication (MFA) strategies that provide layered defense against unauthorized access. Two specific use cases are explored: identity verification and secure approval of banking transactions. This paper addresses key considerations for real-world deployment, including system resiliency, cost-effectiveness, and the efficiency of the Al models under varying conditions. We evaluate the architecture's suitability as a two-factor authentication (2FA) solution, focusing on the accuracy of deepfake detection and the rates of false negatives and false positives. 
653 |a Forgery 
653 |a Web services 
653 |a Deepfake 
653 |a Smartphones 
653 |a Computer architecture 
653 |a Biometrics 
653 |a Identification 
653 |a Passwords 
653 |a Neural networks 
653 |a Deception 
653 |a Facial recognition technology 
653 |a Real time 
653 |a Authentication 
653 |a Access control 
653 |a Voice 
653 |a Cost effectiveness 
653 |a Authenticity 
653 |a Suitability 
653 |a Effectiveness 
653 |a Models 
653 |a Efficiency 
653 |a Deployment 
653 |a Resilience 
653 |a Transactions 
653 |a Cost analysis 
653 |a Verification 
653 |a Voice recognition 
653 |a Architecture 
653 |a Authorization 
653 |a Banking 
653 |a Unauthorized 
700 1 |a Balamurugan, Baladithya 
700 1 |a Hakim, John 
773 0 |t European Conference on Cyber Warfare and Security  |g (Jun 2025), p. 425-436 
786 0 |d ProQuest  |t Political Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244089539/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3244089539/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244089539/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch