Regulation of Somatosensory Temporal Discrimination Threshold Through Motor Training: An EEG and Kinematics Study

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:CNS Neuroscience & Therapeutics vol. 31, no. 8 (Aug 1, 2025)
Үндсэн зохиолч: Zhang, Jinyan
Бусад зохиолчид: Zou, Wangjun, Gao, Binbin, Wu, Jinglong, Zhang, Zhilin, Zhang, Jian, Wang, Luyao, Yan, Tianyi
Хэвлэсэн:
John Wiley & Sons, Inc.
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3244967910
003 UK-CbPIL
022 |a 1755-5930 
022 |a 1755-5949 
022 |a 1080-563X 
024 7 |a 10.1111/cns.70564  |2 doi 
035 |a 3244967910 
045 0 |b d20250801 
084 |a 162634  |2 nlm 
100 1 |a Zhang, Jinyan  |u School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China 
245 1 |a Regulation of Somatosensory Temporal Discrimination Threshold Through Motor Training: An EEG and Kinematics Study 
260 |b John Wiley & Sons, Inc.  |c Aug 1, 2025 
513 |a Journal Article 
520 3 |a ABSTRACT Aims Motor training enhances somatosensory temporal discrimination threshold (STDT), but the distinct neural mechanisms underlying actual execution versus motor imagery remain unclear. This study aimed to compare the effects of ball‐rotation training (BRT; actual execution) and visual‐guided imagery (VGI; motor imagery) on STDT, kinematic performance, and neurophysiological plasticity in healthy adults. Methods Forty‐eight right‐handed participants were randomized into four groups: BRT (actual execution), VGI (motor imagery without movement), tactile control (simple gripping), and no‐intervention control. Over seven days, participants underwent pre‐/post‐training assessments including kinematic analysis, STDT measurement, power spectral analysis and somatosensory‐evoked potentials (SEPs). Results BRT significantly enhanced motor performance (83% score increase vs. 21% in controls, p < 0.001) and movement speed (37% cycle time reduction vs. 12%–16% in others, p < 0.001), with partial transfer to the untrained hand. Both interventions reduced STDT but at distinct locations: BRT selectively improved index finger discrimination (64.02 ms → 43.75 ms, p = 0.007), while VGI enhanced palm sensitivity (73.43 ms → 61.13 ms, p = 0.003). Neurophysiologically, SEPs revealed increased spatial inhibition ratio (SIR) plasticity in both BRT and VGI (p < 0.001), correlating with STDT gains. EEG demonstrated BRT‐induced gamma‐band power increases in parietal regions and theta‐band elevations in prefrontal cortex, whereas VGI modulated delta‐band activity in ipsilateral parietal cortex. Conclusion Actual execution (BRT) and motor imagery (VGI) enhance STDT through distinct neuroplastic mechanisms: BRT optimizes sensorimotor integration via parietal gamma/prefrontal theta oscillations, while VGI relies on ipsilateral parietal delta modulation. These findings underscore the role of cortical reorganization in motor learning and support tailored rehabilitation strategies for neurological disorders. 
610 4 |a Beijing Institute of Technology 
651 4 |a Beijing China 
651 4 |a China 
653 |a Somatosensory cortex 
653 |a Kinematics 
653 |a Accuracy 
653 |a Motor skill learning 
653 |a Investigations 
653 |a Brain research 
653 |a Neurological diseases 
653 |a Review boards 
653 |a Mental task performance 
653 |a Rehabilitation 
653 |a Somatosensory evoked potentials 
653 |a Electroencephalography 
653 |a Motor task performance 
653 |a Theta rhythms 
653 |a Cortex (parietal) 
653 |a Sensorimotor integration 
653 |a EEG 
653 |a Visual system 
653 |a Temporal lobe 
653 |a Temporal discrimination 
653 |a Tactile discrimination 
653 |a Nervous system 
653 |a Visual discrimination 
653 |a Movement disorders 
653 |a Temporal perception 
653 |a Parkinson's disease 
653 |a Prefrontal cortex 
700 1 |a Zou, Wangjun  |u School of Medical Technology, Beijing Institute of Technology, Beijing, China 
700 1 |a Gao, Binbin  |u School of Life Science, Beijing Institute of Technology, Beijing, China 
700 1 |a Wu, Jinglong  |u School of Medical Technology, Beijing Institute of Technology, Beijing, China 
700 1 |a Zhang, Zhilin  |u Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China 
700 1 |a Zhang, Jian  |u School of Medical Technology, Beijing Institute of Technology, Beijing, China 
700 1 |a Wang, Luyao  |u Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China 
700 1 |a Yan, Tianyi  |u School of Medical Technology, Beijing Institute of Technology, Beijing, China 
773 0 |t CNS Neuroscience & Therapeutics  |g vol. 31, no. 8 (Aug 1, 2025) 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3244967910/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3244967910/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3244967910/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch