A Review of Machine Learning Enabled Distributed Fiber Optic Sensors: Principles and Applications

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:Sensors & Transducers vol. 269, no. 2 (Jul 2025), p. 8-22
Hoofdauteur: Davarapalli, Kishore
Andere auteurs: Kumar, Sonu, Sabbarapu, Ganesh, Lalam, Nageswara, Vaska, Lokesh, Pasalapudi, Upendra, Voola, Persis, Jenne, Hanumanthu
Gepubliceerd in:
IFSA Publishing, S.L.
Onderwerpen:
Online toegang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3245443938
003 UK-CbPIL
022 |a 2306-8515 
022 |a 1726-5479 
035 |a 3245443938 
045 2 |b d20250701  |b d20250731 
084 |a 104212  |2 nlm 
100 1 |a Davarapalli, Kishore  |u Department of Electronics and Instrumentation Engineering, University College of Engineering, Adikavi Nannaya University, Rajamahendravaram, Andhra Pradesh-533296, India 
245 1 |a A Review of Machine Learning Enabled Distributed Fiber Optic Sensors: Principles and Applications 
260 |b IFSA Publishing, S.L.  |c Jul 2025 
513 |a Journal Article 
520 3 |a Distributed fiber optic sensors have gained a lot of attention due to their numerous monitoring applications in aerospace, defense, security, civil engineering, and energy monitoring over the last three decades. These examples demonstrate how useful data can be gathered from huge structures with the help of a suitable distributed sensor system for the assessment and management of the monitored structures. Recently, the use of Machine learning (ML), Artificial Intelligence (AI) into the fiber optics for advanced analytics data, rapid data processing, high sensing precision and the ability to categorize the structural events has been demonstrated considerably. The rapid advancement of ML and АТ techniques has revolutionized the field of distributed fiber optic sensors, enabling unprecedented capabilities and applications. This review paper provides a comprehensive analysis of machine learning-enabled distributed fiber optic sensors, focusing on their underlying principles and diverse range of applications. This paper reviews recent developments of ML and AI algorithms integration into distributed fiber optic sensors, discussing the advantages and challenges associated with this combination. Various techniques, such as supervised learning, unsupervised learning, and deep learning, are examined in the context of distributed fiber optic sensing. Moreover, the review addresses the key challenges and limitations associated with ma-chine learning-enabled distributed fiber optic sensors, including data preprocessing, feature ex-traction, model selection, and interpretability of results. Potential solutions and future research directions are also discussed to overcome these challenges and advance the field. This analysis also discusses Potential and Perspective game-changing directions for distributed fiber optical sensor technology development on industrial applications, particularly energy systems monitoring. Possible future outlooks that can be developed with more research have also been mentioned. 
653 |a Accuracy 
653 |a Data processing 
653 |a Fiber optics 
653 |a Generalized linear models 
653 |a Supervised learning 
653 |a Unsupervised learning 
653 |a Civil engineering 
653 |a Distributed sensor systems 
653 |a Machine learning 
653 |a Monitoring 
653 |a Data analysis 
653 |a Artificial intelligence 
653 |a Infrastructure 
653 |a Energy industry 
653 |a Signal to noise ratio 
653 |a Sensors 
653 |a Neural networks 
653 |a Aerospace engineering 
653 |a Support vector machines 
653 |a Industrial applications 
653 |a Algorithms 
653 |a Environmental monitoring 
653 |a Optical measuring instruments 
653 |a Deep learning 
653 |a Acoustics 
700 1 |a Kumar, Sonu  |u Department of Electronics Engineering, Medi-Caps University, Indore, Madhya Pradesh-453331, India 
700 1 |a Sabbarapu, Ganesh  |u Council of Scientific & Industrial Research (CSIR)-National Geophysical Research Institute (NGRI), Uppal Road, Hyderabad, Telangana-500007, India 
700 1 |a Lalam, Nageswara  |u National Energy Technology Laboratory, Cochrans Mill Road, Pittsburgh, PA-15236, USA 
700 1 |a Vaska, Lokesh  |u Council of Scientific & Industrial Research (CSIR)-National Geophysical Research Institute (NGRI), Uppal Road, Hyderabad, Telangana-500007, India 
700 1 |a Pasalapudi, Upendra 
700 1 |a Voola, Persis 
700 1 |a Jenne, Hanumanthu 
773 0 |t Sensors & Transducers  |g vol. 269, no. 2 (Jul 2025), p. 8-22 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3245443938/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3245443938/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3245443938/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch