MARC

LEADER 00000nab a2200000uu 4500
001 3245448588
003 UK-CbPIL
022 |a 2575-7938 
022 |a 2575-7946 
024 7 |a 10.26855/er.2025.07.005  |2 doi 
035 |a 3245448588 
045 2 |b d20250701  |b d20250731 
100 1 |a Wei, Jiameng  |u School of Foreign Language, Wuhan Business University, Wuhan 430118, Hubei, China 
245 1 |a On Building a Bilingual Terminology Corpus from the Perspective of Human-machine Collaborative Translation 
260 |b Hill Publishing Group Inc  |c 2025 
513 |a Journal Article 
520 3 |a The rapid advancements in artificial intelligence and large language models have significantly improved the quality of machine translation, profoundly influencing not only professional translation workflows but also driving pedagogical innovation in translation teaching at the higher education level. However, the ongoing issue of terminological and conceptual inaccuracies in current machine translation systems highlights the need for further refinement. Given the centrality of terminology in academic discourse, ensuring accuracy in terminological translation is essential for facilitating effective scholarly communication. This paper seeks to propose a methodological framework for the systematic extraction of bilingual terminological data to support the development of specialized corpora, with a particular focus on the social sciences and humanities. The primary aim is to maintain terminological precision and conceptual consistency while ensuring strong contextual alignment. Additionally, the paper aims to design an innovative teaching model to equip translation students with the technical skills required to create discipline-specific bilingual terminology databases, addressing a critical competency gap in the contemporary language services industry. 
651 4 |a China 
653 |a Teaching 
653 |a Students 
653 |a Collaboration 
653 |a Curricula 
653 |a Higher education 
653 |a Service industries 
653 |a Academic discourse 
653 |a Social sciences 
653 |a Editing 
653 |a Phonetics 
653 |a Educational attainment 
653 |a Translation instruction 
653 |a Language 
653 |a Accuracy 
653 |a Machine translation 
653 |a Chinese history 
653 |a Artificial intelligence 
653 |a Technology education 
653 |a Terminology 
653 |a Bilingualism 
653 |a Language modeling 
653 |a Scholarly communication 
653 |a Databases 
653 |a Models 
653 |a Humanities 
653 |a Innovations 
653 |a Translation 
653 |a Extraction 
653 |a Technical skills 
653 |a Academic writing 
653 |a Literature Reviews 
653 |a Phonetic Transcription 
653 |a Glossaries 
653 |a Professional Education 
653 |a Database Management Systems 
653 |a Engines 
653 |a Group Unity 
653 |a Competence 
653 |a Proofreading 
653 |a Instructional Innovation 
653 |a Educational Resources 
653 |a Influence of Technology 
653 |a Curriculum Design 
653 |a Database Design 
653 |a Educational Technology 
653 |a Service Occupations 
653 |a Teaching Models 
653 |a Data Analysis 
653 |a Educational Trends 
700 1 |a Li, Yi  |u School of Foreign Language, Wuhan Business University, Wuhan 430118, Hubei, China 
773 0 |t The Educational Review, USA  |g vol. 9, no. 7 (2025), p. 658-664 
786 0 |d ProQuest  |t Education Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3245448588/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3245448588/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3245448588/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch