Feature-guided multilayer encoding–decoding network for segmentation for 3D intraoral scan data

Збережено в:
Бібліографічні деталі
Опубліковано в::Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 32129-32147
Автор: Ma, Tian
Інші автори: Wei, Xiaoyuan, Zhai, Jiechen, Zhang, Ziang, Li, Yawen, Li, Yuancheng
Опубліковано:
Nature Publishing Group
Предмети:
Онлайн доступ:Citation/Abstract
Full Text
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3245520002
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-16360-3  |2 doi 
035 |a 3245520002 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Ma, Tian  |u College of Computer Science and Technology, Xi’an University of Science and Technology, 710054, Xi’an, Shaanxi, China (ROR: https://ror.org/046fkpt18) (GRID: grid.440720.5) (ISNI: 0000 0004 1759 0801) 
245 1 |a Feature-guided multilayer encoding–decoding network for segmentation for 3D intraoral scan data 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Accurate segmentation of malocclusion is crucial in orthodontic diagnosis and treatment planning, but existing deep learning methods seriously affect the reliability of clinical applications due to poor robustness and feature confusion between neighboring tooth classes when dealing with malocclusion. To address this problem, a U-shaped 3D dental model segmentation method based on hierarchical feature guidance is proposed. First, a feature-guided deep encoder architecture is constructed, which introduces a normalization method that combines the local mean with the global standard deviation. And a push–pull strategy is employed to optimize point cloud density, adjusting the standard deviation variation to meet the point cloud density requirements of different regions. Second, an inverted bottleneck global feature extraction flow was designed to guide the encoder in learning the overall features of the dentition and jaw through dynamic scaling of deep-level features,thereby enhancing the semantic recognition of malformations. Finally, an interpolation method is used to decode the high-level dental semantic information layer by layer to reconstruct the spatial structural features of the high-resolution dental mesh. Experimental results on a self-constructed malformed dental dataset show that the proposed method achieves an overall accuracy (OA) of 96.6% and a mean intersection over union (mIoU) of 90.8%, respectively, which are 3.4% points and 8.2% points higher than that of PointNet, 11.3% points and 26% points higher than that of MeshSegNet, and 2.2% points and 5.6% points higher than that of PointeNet ,and the number of model parameters is only 1.54 M. Meanwhile, on the public datasets Teeth3DS and 3D-IOSSeg, the OA of the proposed method reaches 96.4% and 90.1%, and the mIoU reaches 94.5% and 86.8%, respectively. These performance advantages indicate that the proposed method can better meet the development of intelligent virtual orthodontics. 
653 |a Medical diagnosis 
653 |a Accuracy 
653 |a Deep learning 
653 |a Segmentation 
653 |a Neural networks 
653 |a Teeth 
653 |a Orthodontics 
653 |a Standard deviation 
653 |a Design 
653 |a Methods 
653 |a Algorithms 
653 |a Automation 
653 |a Dentition 
653 |a Geometry 
653 |a Efficiency 
653 |a Economic 
700 1 |a Wei, Xiaoyuan  |u College of Computer Science and Technology, Xi’an University of Science and Technology, 710054, Xi’an, Shaanxi, China (ROR: https://ror.org/046fkpt18) (GRID: grid.440720.5) (ISNI: 0000 0004 1759 0801) 
700 1 |a Zhai, Jiechen  |u College of Computer Science and Technology, Xi’an University of Science and Technology, 710054, Xi’an, Shaanxi, China (ROR: https://ror.org/046fkpt18) (GRID: grid.440720.5) (ISNI: 0000 0004 1759 0801) 
700 1 |a Zhang, Ziang  |u College of Computer Science and Technology, Xi’an University of Science and Technology, 710054, Xi’an, Shaanxi, China (ROR: https://ror.org/046fkpt18) (GRID: grid.440720.5) (ISNI: 0000 0004 1759 0801) 
700 1 |a Li, Yawen  |u College of Computer Science and Technology, Xi’an University of Science and Technology, 710054, Xi’an, Shaanxi, China (ROR: https://ror.org/046fkpt18) (GRID: grid.440720.5) (ISNI: 0000 0004 1759 0801) 
700 1 |a Li, Yuancheng  |u College of Computer Science and Technology, Xi’an University of Science and Technology, 710054, Xi’an, Shaanxi, China (ROR: https://ror.org/046fkpt18) (GRID: grid.440720.5) (ISNI: 0000 0004 1759 0801) 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 32129-32147 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3245520002/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3245520002/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3245520002/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch