Free-space optical encoder for computer vision
Gespeichert in:
| Veröffentlicht in: | NPJ Nanophotonics vol. 2, no. 1 (Dec 2025), p. 36-48 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | |
| Veröffentlicht: |
Nature Publishing Group
|
| Schlagworte: | |
| Online-Zugang: | Citation/Abstract Full Text Full Text - PDF |
| Tags: |
Keine Tags, Fügen Sie das erste Tag hinzu!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3245813485 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2948-216X | ||
| 024 | 7 | |a 10.1038/s44310-025-00082-5 |2 doi | |
| 035 | |a 3245813485 | ||
| 045 | 2 | |b d20251201 |b d20251231 | |
| 100 | 1 | |a Choi, Minho |u Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA (ROR: https://ror.org/00cvxb145) (GRID: grid.34477.33) (ISNI: 0000 0001 2298 6657) | |
| 245 | 1 | |a Free-space optical encoder for computer vision | |
| 260 | |b Nature Publishing Group |c Dec 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a The rise of the Internet of Things, autonomous navigation systems, and wearable devices created a growing need for ultra-compact, low-power, low-latency vision sensors that bridge the physical and digital worlds. Vision sensors capture vast amount of data that require swift processing for semantic scene understanding. However, most computer vision algorithms suffer from large power consumption and latency, necessitating the sacrifice of spatial resolution. Optical systems can potentially address these issues with large parallelism and spatial bandwidth for visual data processing. Particularly, free-space optical systems (encoders) can be easily adapted to conventional imaging systems. This paper details the current state of free-space optical encoders and discusses future opportunities for innovations. We also provide insights on where we can achieve optical advantages for computer vision tasks based on empirical evidences. | |
| 653 | |a Navigation systems | ||
| 653 | |a Integrated circuits | ||
| 653 | |a Data processing | ||
| 653 | |a Internet of Things | ||
| 653 | |a Sensors | ||
| 653 | |a Optical wireless | ||
| 653 | |a Semiconductors | ||
| 653 | |a Computer vision | ||
| 653 | |a Scene analysis | ||
| 653 | |a Spatial resolution | ||
| 653 | |a Optical encoders | ||
| 653 | |a Neural networks | ||
| 653 | |a Network latency | ||
| 653 | |a Wearable technology | ||
| 653 | |a Power management | ||
| 653 | |a Design | ||
| 653 | |a Algorithms | ||
| 653 | |a Connectivity | ||
| 653 | |a Optical data processing | ||
| 653 | |a Autonomous navigation | ||
| 653 | |a Light | ||
| 653 | |a Optics | ||
| 653 | |a Free space optics | ||
| 700 | 1 | |a Majumdar, Arka |u Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA (ROR: https://ror.org/00cvxb145) (GRID: grid.34477.33) (ISNI: 0000 0001 2298 6657); Department of Physics, University of Washington, Seattle, WA, USA (ROR: https://ror.org/00cvxb145) (GRID: grid.34477.33) (ISNI: 0000 0001 2298 6657) | |
| 773 | 0 | |t NPJ Nanophotonics |g vol. 2, no. 1 (Dec 2025), p. 36-48 | |
| 786 | 0 | |d ProQuest |t Materials Science Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3245813485/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text |u https://www.proquest.com/docview/3245813485/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3245813485/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch |