Evaluation of flow control using PID versus fuzzy logic in an electropneumatic circuit for pulmonary ventilation applications

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 9 (Sep 2025), p. e0317809
Autor principal: González, Lina
Otros Autores: Griffith, Issa, Lescher, Alfredo, Molino, Jay, Rojas, Asdrúal, Quijano, Damián
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3246084639
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0317809  |2 doi 
035 |a 3246084639 
045 2 |b d20250901  |b d20250930 
084 |a 174835  |2 nlm 
100 1 |a González, Lina 
245 1 |a Evaluation of flow control using PID versus fuzzy logic in an electropneumatic circuit for pulmonary ventilation applications 
260 |b Public Library of Science  |c Sep 2025 
513 |a Journal Article 
520 3 |a High-tech mechanical ventilators are engineered to deliver precise and consistent airflow, which is critical for effective respiratory therapy. This study evaluates flow control performance in a custom-built electro-pneumatic ventilator prototype, comparing Proportional-Integral-Derivative (PID) control with Fuzzy Logic Control (FLC) through real-time experiments on a test-lung platform to assess accuracy and adaptability under dynamic conditions. A laboratory based experimental study was conducted under laboratory conditions, using a test lung simulator and real-time flow data acquisition. The analysis included time-domain performance metrics and statistical validation through Bland–Altman analysis. Results indicate that both controllers meet the accuracy thresholds expected in commercial systems. However, the fuzzy logic controller exhibited narrower limits of agreement and lower standard deviation, indicating greater consistency. While PID control responded faster, with a settling time between 0.32 and 0.43 seconds, FLC achieved superior performance in high-demand scenarios, delivering an entire volume of 900 mL. Stability analysis using the Jury Test and Nyquist criteria confirmed that both systems are dynamically stable. Notably, the FLC curve in the Nyquist plot remained farther from the critical point (–1, 0j), indicating enhanced robustness against disturbances. These findings suggest that FLC may offer a reliable alternative to PID in nonlinear ventilation scenarios, particularly in resource-constrained environments seeking technological autonomy. 
653 |a Data acquisition 
653 |a Nyquist plots 
653 |a Proportional integral derivative 
653 |a Ventilators 
653 |a Performance evaluation 
653 |a Ventilation 
653 |a Fuzzy logic 
653 |a Time domain analysis 
653 |a Stability analysis 
653 |a Air flow 
653 |a Mechanics 
653 |a Flow control 
653 |a Machine learning 
653 |a Performance measurement 
653 |a Control algorithms 
653 |a Lungs 
653 |a Critical point 
653 |a Dynamic stability 
653 |a Neural networks 
653 |a Sensors 
653 |a Design 
653 |a Pneumatics 
653 |a Real time 
700 1 |a Griffith, Issa 
700 1 |a Lescher, Alfredo 
700 1 |a Molino, Jay 
700 1 |a Rojas, Asdrúal 
700 1 |a Quijano, Damián 
773 0 |t PLoS One  |g vol. 20, no. 9 (Sep 2025), p. e0317809 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3246084639/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3246084639/fulltext/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3246084639/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch