Kinematical error analysis and autonomous calibration of a 5PUS-RPUR parallel robot

Сохранить в:
Библиографические подробности
Опубликовано в::PLoS One vol. 20, no. 9 (Sep 2025), p. e0330675
Главный автор: Wang, Zesheng
Другие авторы: Li, Yanbiao, Chen, Bo, Ding, Kexin, Zhu, Jialong, Zhuang, Min
Опубликовано:
Public Library of Science
Предметы:
Online-ссылка:Citation/Abstract
Full Text
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3246084724
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0330675  |2 doi 
035 |a 3246084724 
045 2 |b d20250901  |b d20250930 
084 |a 174835  |2 nlm 
100 1 |a Wang, Zesheng 
245 1 |a Kinematical error analysis and autonomous calibration of a 5PUS-RPUR parallel robot 
260 |b Public Library of Science  |c Sep 2025 
513 |a Journal Article 
520 3 |a Kinematic calibration is essential for improving the absolute accuracy of parallel robots, but conventional identification methods often struggle with the complex, non-linear coupling of their numerous geometric error parameters. This can lead to convergence to local rather than global optima, limiting the effectiveness of the calibration. To address this challenge, this paper proposes a novel self-calibration methodology based on a global optimization strategy. Taking the 5PUS-RPUR parallel robot as an example, its inverse kinematics is established based on screw theory. A sensitivity analysis is performed using the finite difference method to screen for and eliminate error sources with a negligible impact on the moving platform’s pose. Measurement points are then selected uniformly throughout the workspace using the farthest point sampling algorithm. An objective function for the GA is constructed by integrating the actuator displacement errors from each kinematic chain with the overall pose error of the moving platform. Non-linear constraints are handled using a penalty function approach. Based on measurement data from an onboard IMU and joint encoders, the identification results are obtained. The experimental results demonstrate that the proposed method significantly improves the robot’s positional accuracy across its entire workspace. The superiority and efficacy of this approach are further corroborated by a benchmark comparison with three recent, state-of-the-art calibration methodologies. 
653 |a Kinematics 
653 |a Accuracy 
653 |a Sensitivity analysis 
653 |a Identification methods 
653 |a Finite difference method 
653 |a Parameter identification 
653 |a Calibration 
653 |a Self calibration 
653 |a Optimization 
653 |a Robots 
653 |a Error analysis 
653 |a Manufacturing 
653 |a Screw theory 
653 |a Penalty function 
653 |a Global optimization 
653 |a Inverse kinematics 
653 |a Objective function 
653 |a Effectiveness 
653 |a Algorithms 
653 |a Workspace 
653 |a Actuators 
653 |a Environmental 
700 1 |a Li, Yanbiao 
700 1 |a Chen, Bo 
700 1 |a Ding, Kexin 
700 1 |a Zhu, Jialong 
700 1 |a Zhuang, Min 
773 0 |t PLoS One  |g vol. 20, no. 9 (Sep 2025), p. e0330675 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3246084724/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3246084724/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3246084724/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch