Towards Deployment of Computer Vision Neural Networks for Scene Understanding

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor principal: Humes, Edward Steven
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3246414676
003 UK-CbPIL
020 |a 9798293808243 
035 |a 3246414676 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Humes, Edward Steven 
245 1 |a Towards Deployment of Computer Vision Neural Networks for Scene Understanding 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Scene understanding is a cornerstone of autonomous operation for robotics and edge computing platforms. However, deploying advanced computer vision neural networks on these platforms presents two central challenges: the need for vast amounts of meticulously labeled training data, and the stringent energy and compute constraints imposed by embedded hardware. Meeting these requirements demands models that achieve both high accuracy and efficiency, balancing performance with limited latency, memory, and power budgets. This thesis addresses both of these barriers to real-world deployment. First, we propose a novel synthetic-to-real domain adaptation framework that substantially reduces the need for large volumes of labeled real-world data, enabling effective image segmentation and robust scene understanding with minimal annotation effort. Second, we introduce Squeezed Edge YOLO, a lightweight object detector architecture specifically designed to operate within the tight latency and energy budgets of edge computing platforms. Both the domain adaptation framework and the object detector demonstrate strong empirical performance. Our domain adaptation approach is validated on the challenging synthetic-to-real ”SYNTHIA →Cityscapes” and ”GTAV →Cityscapes” benchmarks, where we outperform the previous state of the art, HALO. To evaluate Squeezed Edge YOLO, we deploy it on a nano-UAV and collect real-world measurements, achieving real-time object detection at approximately 8 inferences per second with low power consumption. Together, these contributions advance the deployment of deep neural scene understanding on resource-constrained robotic and edge platforms. 
653 |a Computer science 
653 |a Computer engineering 
653 |a Artificial intelligence 
653 |a Robotics 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3246414676/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3246414676/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch