Edge AI-Enabled Dynamic Power Factor Correction using TinyML, Blockchain and IoT for Real-Time Smart Grid Optimization and Industrial Applications

Saved in:
Bibliographic Details
Published in:i-Manager's Journal on Electrical Engineering vol. 18, no. 4 (Jun 2025)
Main Author: Prakash Ch. Gochhayat
Other Authors: Afam, Md, Sk Md Tanvir Alam, Mallick, Gaurav K, Sarker, Krishna, Paramanik, Sayan
Published:
iManager Publications
Subjects:
Online Access:Citation/Abstract
Full Text - PDF
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nab a2200000uu 4500
001 3246419632
003 UK-CbPIL
022 |a 0973-8835 
022 |a 2230-7176 
024 7 |a 10.26634/jee.18.4.22174  |2 doi 
035 |a 3246419632 
045 2 |b d20250601  |b d20250630 
084 |a 215741  |2 nlm 
100 1 |a Prakash Ch. Gochhayat 
245 1 |a Edge AI-Enabled Dynamic Power Factor Correction using TinyML, Blockchain and IoT for Real-Time Smart Grid Optimization and Industrial Applications 
260 |b iManager Publications  |c Jun 2025 
513 |a Journal Article 
520 3 |a This work presents a comprehensive design and implementation of an AI-enabled Smart Power Factor Correction (PFC) System that integrates advanced technologies such as Machine Learning (ML), Deep Learning, IoT, Edge Computing, and Blockchain with conventional PFC hardware. The proposed system intelligently compensates reactive power and improves power factor in real time by dynamically switching capacitor banks based on load predictions and power quality analysis. At the hardware level, the system utilizes components such as Arduino Uno, ACS712 current sensor, LM358 op-amp, single-channel relays, and ceiling fan capacitors, while more advanced processing is supported through ESP8266/ESP32 modules for connectivity and Jetson Nano or Raspberry Pi for edge AI inference. The ML algorithms, trained using historical load data and power quality parameters, run either on embedded microcontrollers (TinyML) or edge devices for low-latency decision-making. Additionally, a smart capacitor bank is used to provide fine-grained control over reactive power compensation, and system logs are securely recorded through a lightweight blockchain node to ensure transparency in smart grid environments. The integrated ThingsBoard and Node-RED dashboard enables remote monitoring and real-time analytics for system adaptation and performance tracking. Simulation and hardware results demonstrate a significant improvement in power factor correction accuracy and response time compared to conventional fixed or manually switched capacitor systems. The proposed AI-driven model not only adapts to dynamic and nonlinear load conditions but also reduces over- or under-compensation through predictive switching. Comparative analysis confirms enhanced Total Harmonic Distortion (THD) reduction, power factor stabilization, and improved system resilience under varying load profiles. The integration of AI and smart technologies thus marks a promising advancement toward intelligent, autonomous, and transparent power quality enhancement in next-generation smart grids. 
653 |a Reactive power 
653 |a Compensation 
653 |a Embedded microcontrollers 
653 |a Hardware 
653 |a Blockchain 
653 |a Capacitors 
653 |a Edge computing 
653 |a Remote monitoring 
653 |a Harmonic distortion 
653 |a Industrial applications 
653 |a Capacitor banks 
653 |a Smart grid 
653 |a Deep learning 
653 |a Machine learning 
653 |a Real time 
653 |a Power factor 
653 |a Accuracy 
653 |a Adaptability 
653 |a Privacy 
653 |a Electrical engineering 
653 |a Internet of Things 
653 |a Data integrity 
653 |a Artificial intelligence 
653 |a Sensors 
653 |a Renewable resources 
653 |a Energy efficiency 
653 |a Alternative energy sources 
653 |a Smart meters 
653 |a Comparative analysis 
700 1 |a Afam, Md 
700 1 |a Sk Md Tanvir Alam 
700 1 |a Mallick, Gaurav K 
700 1 |a Sarker, Krishna 
700 1 |a Paramanik, Sayan 
773 0 |t i-Manager's Journal on Electrical Engineering  |g vol. 18, no. 4 (Jun 2025) 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3246419632/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3246419632/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch