Solving multi-scenario hybrid flow shop scheduling problem based on an improved probe machine model

Gardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 9 (Sep 2025), p. e0330020
Autor Principal: Tian, Xiang
Outros autores: Kong, Yang, Liu, Xiyu
Publicado:
Public Library of Science
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3246511727
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0330020  |2 doi 
035 |a 3246511727 
045 2 |b d20250901  |b d20250930 
084 |a 174835  |2 nlm 
100 1 |a Tian, Xiang 
245 1 |a Solving multi-scenario hybrid flow shop scheduling problem based on an improved probe machine model 
260 |b Public Library of Science  |c Sep 2025 
513 |a Journal Article 
520 3 |a The hybrid flow-shop scheduling problem is widely present and applied in industries such as production, manufacturing, transportation, and aerospace. In recent years, due to the advantages of nonlinear access and fully parallel processing, the probe machine has shown powerful computing capabilities and promising applications in solving various combinatorial optimization problems. This work firstly proposes an Improved Probe Machine with Multi-Level Probe Operations (IPMMPO) and ingeniously designs general data libraries and probe libraries tailored for multi-scenario HFS problems, including HFS with identical parallel machines and HFS with unrelated parallel machines, no-wait scenario, and standard scenario. Secondly, based on the data libraries of the IPMMPO, two tuple sets suitable for constraint programming modeling are further designed as data preprocessing. Next, a CP model (IPMMPO-CP) applicable to multi-scenario HFS problems is proposed. Finally, based on a large number of instances and real cases, IPMMPO-CP is compared with 9 representative algorithms and 2 latest CP models. The results demonstrate that the proposed IPMMPO-CP outperforms the compared algorithms and models. 
653 |a Scheduling 
653 |a Parallel processing 
653 |a Software 
653 |a Integer programming 
653 |a Algorithms 
653 |a Combinatorial analysis 
653 |a Optimization 
653 |a Approximation 
653 |a Job shops 
653 |a Linear programming 
653 |a Methods 
653 |a Manufacturing 
653 |a Critical path 
653 |a Heuristic 
653 |a Traveling salesman problem 
653 |a Job shop scheduling 
653 |a Economic 
700 1 |a Kong, Yang 
700 1 |a Liu, Xiyu 
773 0 |t PLoS One  |g vol. 20, no. 9 (Sep 2025), p. e0330020 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3246511727/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3246511727/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3246511727/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch