Bi-Level Collaborative Optimization of Electricity-Carbon Integrated Demand Response for Energy-Intensive Industries under Source-Load Interaction

Guardat en:
Dades bibliogràfiques
Publicat a:Energy Engineering : Journal of the Association of Energy Engineers vol. 122, no. 9 (2025), p. 3867-3891
Autor principal: Wang, Huaihu
Altres autors: Chen, Wen, Yang, Jin, Su, Rui, Li, Jiale, Liao Yuan, Du, Zhaobin, Meng, Yujie
Publicat:
Tech Science Press
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3246599437
003 UK-CbPIL
022 |a 0199-8595 
022 |a 1546-0118 
022 |a 0096-0608 
022 |a 0002-2284 
022 |a 0096-0594 
024 7 |a 10.32604/ee.2025.068062  |2 doi 
035 |a 3246599437 
045 2 |b d20250101  |b d20251231 
100 1 |a Wang, Huaihu  |u Dali Power Supply Bureau, Yunnan Power Grid Co., Ltd., Dali, 671000, China 
245 1 |a Bi-Level Collaborative Optimization of Electricity-Carbon Integrated Demand Response for Energy-Intensive Industries under Source-Load Interaction 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a Traditional demand response (DR) programs for energy-intensive industries (EIIs) primarily rely on electricity price signals and often overlook carbon emission factors, limiting their effectiveness in supporting low-carbon transitions. To address this challenge, this paper proposes an electricity–carbon integrated DR strategy based on a bi-level collaborative optimization framework that coordinates the interaction between the grid and EIIs. At the upper level, the grid operator minimizes generation and curtailment costs by optimizing unit commitment while determining real-time electricity prices and dynamic carbon emission factors. At the lower level, EIIs respond to these dual signals by minimizing their combined electricity and carbon trading costs, considering their participation in medium- and long-term electricity markets, day-ahead spot markets, and carbon emissions trading schemes. The model accounts for direct and indirect carbon emissions, distributed photovoltaic (PV) generation, and battery energy storage systems. This interaction is structured as a Stackelberg game, where the grid acts as the leader and EIIs as followers, enabling dynamic feedback between pricing signals and load response. Simulation studies on an improved IEEE 30-bus system, with a cement plant as a representative user form EIIs, show that the proposed strategy reduces user-side carbon emissions by 7.95% and grid-side generation cost by 4.66%, though the user’s energy cost increases by 7.80% due to carbon trading. The results confirm that the joint guidance of electricity and carbon prices effectively reshapes user load profiles, encourages peak shaving, and improves PV utilization. This coordinated approach not only achieves emission reduction and cost efficiency but also offers a theoretical and practical foundation for integrating carbon pricing into demand-side energy management in future low-carbon power systems. 
653 |a Carbon content 
653 |a Energy management 
653 |a Electrical loads 
653 |a Collaboration 
653 |a Strategy 
653 |a Electricity 
653 |a Energy costs 
653 |a Emissions trading 
653 |a Carbon 
653 |a Optimization 
653 |a Electricity pricing 
653 |a Electric power demand 
653 |a Unit commitment 
653 |a Real time 
653 |a Demand side management 
653 |a Emissions control 
653 |a Photovoltaic cells 
653 |a Electric power systems 
700 1 |a Chen, Wen  |u Center of Power Grid Planning and Constructing, Yunnan Power Grid Co., Ltd., Kunming, 650011, China 
700 1 |a Yang, Jin  |u Dali Power Supply Bureau, Yunnan Power Grid Co., Ltd., Dali, 671000, China 
700 1 |a Su, Rui  |u Dali Power Supply Bureau, Yunnan Power Grid Co., Ltd., Dali, 671000, China 
700 1 |a Li, Jiale  |u School of Electric Power, South China University of Technology, Guangzhou, 510641, China 
700 1 |a Liao Yuan  |u School of Electric Power, South China University of Technology, Guangzhou, 510641, China 
700 1 |a Du, Zhaobin  |u School of Electric Power, South China University of Technology, Guangzhou, 510641, China 
700 1 |a Meng, Yujie  |u School of Electric Power, South China University of Technology, Guangzhou, 510641, China 
773 0 |t Energy Engineering : Journal of the Association of Energy Engineers  |g vol. 122, no. 9 (2025), p. 3867-3891 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3246599437/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3246599437/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch