p-Adic Cellular Neural Networks With Delay

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor principal: Dibba, Baboucarr
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3246996675
003 UK-CbPIL
020 |a 9798293810451 
035 |a 3246996675 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Dibba, Baboucarr 
245 1 |a <em>p</em>-Adic Cellular Neural Networks With Delay 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a This dissertation presents a novel framework for p-adic reaction-diffusion cellular neural networks (CNNs) with delay, offering new insights into the stability and dynamic behavior of these networks. Through numerical simulations, we explore their response to various conditions, highlighting their capability to model complex systems. Additionally, this work reviews cutting-edge developments in p-adic CNNs, particularly their application to advanced image processing tasks such as edge detection and noise filtering, demonstrating their effectiveness in preserving critical image features while filtering out noise. This dissertation is written in collaboration with my Ph.D supervisor and Dr. Zambrano-Luna, Brian. 
653 |a Mathematics 
653 |a Statistics 
653 |a Applied mathematics 
653 |a Artificial intelligence 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3246996675/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3246996675/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch