Weighted overlapping group lasso for integrating prior network knowledge into gene set analysis

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC Bioinformatics vol. 26 (2025), p. 1-20
1. Verfasser: Huang, Dan
Weitere Verfasser: Geunsu Jo, Kim, Kipoong, Sun, Hokeun
Veröffentlicht:
Springer Nature B.V.
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3247098057
003 UK-CbPIL
022 |a 1471-2105 
024 7 |a 10.1186/s12859-025-06170-9  |2 doi 
035 |a 3247098057 
045 2 |b d20250101  |b d20251231 
084 |a 58459  |2 nlm 
100 1 |a Huang, Dan 
245 1 |a Weighted overlapping group lasso for integrating prior network knowledge into gene set analysis 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a BackgroundGene set analysis aims to identify gene sets containing differentially expressed genes between two different experimental conditions. A representative example of gene sets is a gene regulatory network where multiple genes are linked with each other for regulation of gene expression. Most of statistical methods for gene set analysis were designed to capture group-based association signals, ignoring a genetic network structure. Consequently, they often fail to identify gene sets where the number of differentially expressed genes are only a few and they have sparse association signals.ResultsWe propose a new computational method to utilize prior network knowledge for gene set analysis. The proposed method is essentially combines the coefficient estimates of network-based regularization into overlapping group lasso. Network-based regularization can boost association signals among linked genes while overlapping group lasso performs selection of gene sets including differentially expressed genes. In our extensive simulation study, the performance of the proposed method has been evaluated, compared with the existing methods. We also applied it to gene expression data of The Cancer Genome Atlas Breast Invasive Carcinoma Collection (TCGA-BRCA). We were able to identify cancer-related pathways that were missed by the existing methods.ConclusionOverlapping group lasso is a regularization method for group selection allowing overlapping variables. Network-based regularization is a variable selection method utilizing graph information among variables. The proposed weighted overlapping group lasso (wOGL) adopts the coefficient estimates of network-based regularization for the weight of overlapping group lasso. Consequently, it can identify gene sets containing differentially expressed genes, utilizing prior network knowledge. 
653 |a Sparsity 
653 |a Regularization 
653 |a Gene expression 
653 |a Breast carcinoma 
653 |a Genes 
653 |a Estimates 
653 |a Cancer 
653 |a Group selection 
653 |a Variables 
653 |a Statistical methods 
653 |a Regularization methods 
653 |a Breast cancer 
653 |a Information processing 
653 |a Group theory 
653 |a Genotype & phenotype 
653 |a Proteins 
653 |a Social 
653 |a Environmental 
700 1 |a Geunsu Jo 
700 1 |a Kim, Kipoong 
700 1 |a Sun, Hokeun 
773 0 |t BMC Bioinformatics  |g vol. 26 (2025), p. 1-20 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3247098057/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3247098057/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3247098057/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch