GeneSetCluster 2.0: a comprehensive toolset for summarizing and integrating gene-sets analysis

Guardado en:
Detalles Bibliográficos
Publicado en:BMC Bioinformatics vol. 26 (2025), p. 1-18
Autor principal: Ortega-Legarreta, Asier
Otros Autores: Maillo, Alberto, Mouzo, Daniel, Ana Rosa López-Pérez, Kular, Lara, Majid Pahlevan Kakhki, Jagodic, Maja, Tegner, Jesper, Lagani, Vincenzo, Ewing, Ewoud, Gomez-Cabrero, David
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3247098082
003 UK-CbPIL
022 |a 1471-2105 
024 7 |a 10.1186/s12859-025-06249-3  |2 doi 
035 |a 3247098082 
045 2 |b d20250101  |b d20251231 
084 |a 58459  |2 nlm 
100 1 |a Ortega-Legarreta, Asier 
245 1 |a GeneSetCluster 2.0: a comprehensive toolset for summarizing and integrating gene-sets analysis 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a Section BackgroundGene-Set Analysis (GSA) is commonly used to analyze high-throughput experiments. However, GSA cannot readily disentangle clusters or pathways due to redundancies in upstream knowledge bases, which hinders comprehensive exploration and interpretation of biological findings. To address this challenge, we developed GeneSetCluster, an R package designed to summarize and integrate GSA results. Over time, we and users as well identified limitations in the original version, such as difficulties in managing redundancies across multiple gene-sets, large computational times, and its lack of accessibility for users without programming expertise.AbstractSection ResultsWe present GeneSetCluster 2.0, a comprehensive upgrade that delivers methodological, computational, interpretative, and user-experience enhancements. Methodologically, GeneSetCluster 2.0 introduces a novel approach to address duplicated gene-sets and implements a seriation-based clustering algorithm that reorders results, aiding pattern identification. Computationally, the package is optimized for parallel processing, significantly reducing execution time. GeneSetCluster 2.0 enhances cluster annotations by associating clusters with relevant tissues and biological processes to improve biological interpretation, particularly for human and mouse data. To broaden accessibility, we have developed a user-friendly web application enabling non-programmers to use it. This version also ensures seamless integration between the R package, catering to users with programming expertise, and the web application for broader audiences. We evaluated the updates in a single-cell RNA public dataset.AbstractSection ConclusionGeneSetCluster 2.0 offers substantial improvements over its predecessor. Furthermore, by bridging the gap between bioinformaticians and clinicians in multidisciplinary teams, GeneSetCluster 2.0 facilitates collaborative research. The R package and web application, along with detailed installation and usage guides, are available on GitHub (https://github.com/TranslationalBioinformaticsUnit/GeneSetCluster2.0), and the web application can be accessed at https://translationalbio.shinyapps.io/genesetcluster/. 
653 |a DNA methylation 
653 |a Parallel processing 
653 |a Accessibility 
653 |a Gene expression 
653 |a Knowledge bases (artificial intelligence) 
653 |a Applications programs 
653 |a Bioinformatics 
653 |a Ontology 
653 |a Clustering 
653 |a Databases 
653 |a Knowledge management 
653 |a User experience 
653 |a Computer applications 
653 |a Methods 
653 |a Annotations 
653 |a Biological activity 
653 |a Environmental 
700 1 |a Maillo, Alberto 
700 1 |a Mouzo, Daniel 
700 1 |a Ana Rosa López-Pérez 
700 1 |a Kular, Lara 
700 1 |a Majid Pahlevan Kakhki 
700 1 |a Jagodic, Maja 
700 1 |a Tegner, Jesper 
700 1 |a Lagani, Vincenzo 
700 1 |a Ewing, Ewoud 
700 1 |a Gomez-Cabrero, David 
773 0 |t BMC Bioinformatics  |g vol. 26 (2025), p. 1-18 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3247098082/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3247098082/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3247098082/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch