Edge computing with federated learning for early detection of citric acid overdose and adjustment of regional citrate anticoagulation

Guardado en:
Detalles Bibliográficos
Publicado en:BMC Medical Informatics and Decision Making vol. 25 (2025), p. 1-23
Autor principal: Mali, Saroj
Otros Autores: Mali, Niroj, Zeng, Feng, Zhang, Ling
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3247098286
003 UK-CbPIL
022 |a 1472-6947 
024 7 |a 10.1186/s12911-025-03130-4  |2 doi 
035 |a 3247098286 
045 2 |b d20250101  |b d20251231 
084 |a 58451  |2 nlm 
100 1 |a Mali, Saroj 
245 1 |a Edge computing with federated learning for early detection of citric acid overdose and adjustment of regional citrate anticoagulation 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a Regional citrate anticoagulation (RCA) is critical for extracorporeal anticoagulation in continuous renal replacement therapy done at the bedside. To make patients’ data more secure and to help with computer-based monitoring of dosages, we suggest a system that uses machine learning. This system will give early alerts about citric acid overdose and advise changes to how much citrate and calcium gluconate are infused into the patient’s body. Citric acid overdose causes significant clinical risks, emphasizing the need for better adaptable anticoagulation procedures that can respond quickly. The study puts forward a new structure that uses edge computing and federated learning to make better citrate anticoagulation procedures. We proposed the resource-aware Federated Learning with Dynamic Client Selection (RAFL-Fed) algorithm in our method. In this setup, every client takes part by training a local model locally and then sending its outcome to a main server. The algorithm chooses clients for each training session depending on their computing resources, which keeps things efficient and scalable. The server collects the client inputs using weighted averages to update the global model. This step is performed repeatedly across many communication cycles, letting the system adjust to changing data trends from different locations. We put RAFL-Fed to the test on the MIMIC-IV dataset, and it outperformed other methods, getting a high accuracy of 0.9615 (IID) and 0.9571 (Non-IID), also with the lowest loss values being 0.2625 and 0.2469 in that order. It also noted the best MAE at 0.1731 (Non-IID) and a bit higher at 0.2081 (IID). Along with the high sensitivity at 0.9968, specificity stood strong as well, measuring 0.9449, plus latency was only 0.123s, which shows how effective it is for early detection of citric acid overdose as well as adjusting in real-time in the regional citrate anticoagulation process. The proposed method shows a promising solution for the real-time monitoring and adjustment of citrate anticoagulation regimens, greatly enhancing patient data security and treatment effectiveness in clinical settings. This method signifies a significant advancement in handling anticoagulation therapy. 
653 |a Anticoagulants 
653 |a Acids 
653 |a Algorithms 
653 |a Telemedicine 
653 |a Edge computing 
653 |a Data processing 
653 |a Privacy 
653 |a Monitoring 
653 |a Machine learning 
653 |a Citric acid 
653 |a Overdose 
653 |a Patients 
653 |a Electronic health records 
653 |a Data integrity 
653 |a Electrolytes 
653 |a Servers 
653 |a Response rates 
653 |a Effectiveness 
653 |a Hospitals 
653 |a Latency 
653 |a Kidneys 
653 |a Real time 
653 |a Federated learning 
653 |a Intensive care 
653 |a Renal replacement therapy 
653 |a Drug overdose 
700 1 |a Mali, Niroj 
700 1 |a Zeng, Feng 
700 1 |a Zhang, Ling 
773 0 |t BMC Medical Informatics and Decision Making  |g vol. 25 (2025), p. 1-23 
786 0 |d ProQuest  |t Healthcare Administration Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3247098286/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3247098286/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3247098286/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch