Deep learning model for predicting lymph node metastasis around rectal cancer based on rectal tumor core area and mesangial imaging features

Guardado en:
Detalles Bibliográficos
Publicado en:BMC Medical Imaging vol. 25 (2025), p. 1-10
Autor principal: Guo, Lili
Otros Autores: Fu, Kuang, Wang, Wenjia, Zhou, Li, Chen, Lu, Jiang, Miaomiao
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3247110413
003 UK-CbPIL
022 |a 1471-2342 
024 7 |a 10.1186/s12880-025-01878-9  |2 doi 
035 |a 3247110413 
045 2 |b d20250101  |b d20251231 
084 |a 58449  |2 nlm 
100 1 |a Guo, Lili 
245 1 |a Deep learning model for predicting lymph node metastasis around rectal cancer based on rectal tumor core area and mesangial imaging features 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a Assessing lymph node metastasis (LNM) involvement in patients with rectal cancer (RC) is fundamental in disease management. In this study, we used artificial intelligence (AI) technology to develop a segmentation model that automatically segments the tumor core area and mesangial tissue from magnetic resonance T2-weighted imaging (T2WI) and apparent diffusion coefficient (ADC) images collected from 122 RC patients to improve the accuracy of LNM prediction, after which omics machine modeling was performed on the segmented ROI. An automatic segmentation model was developed using nn-UNet. This pipeline integrates deep learning (DL), specifically 3D U-Net, for semantic segmentation and image processing techniques such as resampling, normalization, connected component analysis, image registration, and radiomics features coupled with machine learning. The results showed that the DL segmentation method could effectively segment the tumor and mesangial areas from MR sequences (the median dice coefficient: 0.90 ± 0.08; mesorectum segmentation: 0.85 ± 0.36), and the radiological characteristics of rectal and mesangial tissues in T2WI and ADC images could help distinguish RC treatments. The nn-UNet model demonstrated promising preliminary results, achieving the highest area under the curve (AUC) values in various scenarios. In the evaluation encompassing both tumor lesions and mesorectum involvement, the model exhibited an AUC of 0.743, highlighting its strong discriminatory ability to predict a combined outcome involving both elements. Specifically targeting tumor lesions, the model achieved an AUC of 0.731, emphasizing its effectiveness in distinguishing between positive and negative cases of tumor lesions. In assessing the prediction of mesorectum involvement, the model displayed moderate predictive utility with an AUC of 0.753. The nn-UNet model demonstrated impressive performance across all evaluated scenarios, including combined tumor lesions and mesorectum involvement, tumor lesions alone, and mesorectum involvement alone. 
610 4 |a Harbin Medical University 
653 |a Diffusion coefficient 
653 |a Tumors 
653 |a Software 
653 |a Tomography 
653 |a Magnetic resonance imaging 
653 |a Artificial intelligence 
653 |a Performance evaluation 
653 |a Metastasis 
653 |a Mesentery 
653 |a Resampling 
653 |a Image registration 
653 |a Medical imaging 
653 |a Lesions 
653 |a Feature selection 
653 |a Image processing 
653 |a Semantic segmentation 
653 |a Registration 
653 |a Radiomics 
653 |a Colorectal cancer 
653 |a Metastases 
653 |a Machine learning 
653 |a Rectum 
653 |a Deep learning 
653 |a Patients 
653 |a Medical prognosis 
653 |a Image segmentation 
653 |a Cancer 
653 |a Lymphatic system 
653 |a Regions 
653 |a Information processing 
653 |a Lymph nodes 
653 |a Predictions 
653 |a Magnetic resonance 
700 1 |a Fu, Kuang 
700 1 |a Wang, Wenjia 
700 1 |a Zhou, Li 
700 1 |a Chen, Lu 
700 1 |a Jiang, Miaomiao 
773 0 |t BMC Medical Imaging  |g vol. 25 (2025), p. 1-10 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3247110413/abstract/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3247110413/fulltext/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3247110413/fulltextPDF/embedded/CH9WPLCLQHQD1J4S?source=fedsrch