MSFE-GallNet-X: a multi-scale feature extraction-based CNN Model for gallbladder disease analysis with enhanced explainability

Guardat en:
Dades bibliogràfiques
Publicat a:BMC Medical Imaging vol. 25 (2025), p. 1-22
Autor principal: Hadiur Rahman Nabil
Altres autors: Istyak Ahmed, Das, Aritra, M. F. Mridha Mohsin Kabir, Aung, Zeyar
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3247110499
003 UK-CbPIL
022 |a 1471-2342 
024 7 |a 10.1186/s12880-025-01902-y  |2 doi 
035 |a 3247110499 
045 2 |b d20250101  |b d20251231 
084 |a 58449  |2 nlm 
100 1 |a Hadiur Rahman Nabil 
245 1 |a MSFE-GallNet-X: a multi-scale feature extraction-based CNN Model for gallbladder disease analysis with enhanced explainability 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a Section ObjectiveThis study introduces MSFE-GallNet-X, a domain-adaptive deep learning model utilizing multi-scale feature extraction (MSFE) to improve the classification accuracy of gallbladder diseases from grayscale ultrasound images, while integrating explainable artificial intelligence (XAI) methods to enhance clinical interpretability.AbstractSection MethodsWe developed a convolutional neural network-based architecture that automatically learns multi-scale features from a dataset comprising 10,692 high-resolution ultrasound images from 1,782 patients, covering nine gallbladder disease classes, including gallstones, cholecystitis, and carcinoma. The model incorporated Gradient-Weighted Class Activation Mapping (Grad-CAM) and Local Interpretable Model-Agnostic Explanations (LIME) to provide visual interpretability of diagnostic predictions. Model performance was evaluated using standard metrics, including accuracy and F1 score.AbstractSection ResultsThe MSFE-GallNet-X achieved a classification accuracy of 99.63% and an F1 score of 99.50%, outperforming state-of-the-art models including VGG-19 (98.89%) and DenseNet121 (91.81%), while maintaining greater parameter efficiency, only 1·91 M parameters in gallbladder disease classification. Visualization through Grad-CAM and LIME highlighted critical image regions influencing model predictions, supporting explainability for clinical use.AbstractSection ConclusionMSFE-GallNet-X demonstrates strong performance on a controlled and balanced dataset, suggesting its potential as an AI-assisted tool for clinical decision-making in gallbladder disease management.AbstractSection Clinical trial numberNot applicable. 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Gallbladder 
653 |a Artificial intelligence 
653 |a Datasets 
653 |a Deep learning 
653 |a Performance evaluation 
653 |a Classification 
653 |a Image resolution 
653 |a Disease 
653 |a Artificial neural networks 
653 |a Gallbladder cancer 
653 |a Medical imaging 
653 |a Gallbladder diseases 
653 |a Gallstones 
653 |a Abdomen 
653 |a Machine learning 
653 |a Explainable artificial intelligence 
653 |a Breast cancer 
653 |a Efficiency 
653 |a Calculi 
653 |a Ultrasound 
653 |a Clinical decision making 
653 |a Cholecystitis 
653 |a Parameters 
653 |a Ultrasonic imaging 
653 |a Decision making 
653 |a Neural networks 
700 1 |a Istyak Ahmed 
700 1 |a Das, Aritra 
700 1 |a M. F. Mridha Mohsin Kabir 
700 1 |a Aung, Zeyar 
773 0 |t BMC Medical Imaging  |g vol. 25 (2025), p. 1-22 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3247110499/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3247110499/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3247110499/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch