A prototype ETL pipeline that uses HL7 FHIR RDF resources when deploying pure functions to enrich knowledge graph patient data

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Biomedical Semantics vol. 16 (2025), p. 1-13
Autor principal: Ansari, Adeel
Altres autors: Conte, Marisa, Flynn, Allen, Paturkar, Avanti
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3247146211
003 UK-CbPIL
022 |a 2041-1480 
024 7 |a 10.1186/s13326-025-00335-4  |2 doi 
035 |a 3247146211 
045 2 |b d20250101  |b d20251231 
084 |a 265152  |2 nlm 
100 1 |a Ansari, Adeel 
245 1 |a A prototype ETL pipeline that uses HL7 FHIR RDF resources when deploying pure functions to enrich knowledge graph patient data 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a BackgroundFor clinical care and research, knowledge graphs with patient data can be enriched by extracting parameters from a knowledge graph and then using them as inputs to compute new patient features with pure functions. Systematic and transparent methods for enriching knowledge graphs with newly computed patient features are of interest. When enriching the patient data in knowledge graphs this way, existing ontologies and well-known data resource standards can help promote semantic interoperability.ResultsWe developed and tested a new data processing pipeline for extracting, computing, and returning newly computed results to a large knowledge graph populated with electronic health record and patient survey data. We show that RDF data resource types already specified by Health Level 7's FHIR RDF effort can be programmatically validated and then used by this new data processing pipeline to represent newly derived patient-level features.ConclusionsKnowledge graph technology can be augmented with standards-based semantic data processing pipelines for deploying and tracing the use of pure functions to derive new patient-level features from existing data. Semantic data processing pipelines enable research enterprises to report on new patient-level computations of interest with linked metadata that details the origin and background of every new computation. 
651 4 |a Canada 
653 |a Software 
653 |a Computation 
653 |a Metadata 
653 |a Data processing 
653 |a Linked Data 
653 |a Datasets 
653 |a Graphs 
653 |a Body mass index 
653 |a Ontology 
653 |a Standards 
653 |a Mental disorders 
653 |a Enrichment 
653 |a Biomedical research 
653 |a Knowledge management 
653 |a Semantic web 
653 |a Knowledge representation 
653 |a Electronic medical records 
653 |a Electronic health records 
653 |a Machine learning 
653 |a Semantics 
653 |a Pipelining (computers) 
653 |a Information processing 
653 |a Mental health 
653 |a Resource Description Framework-RDF 
653 |a Libraries 
700 1 |a Conte, Marisa 
700 1 |a Flynn, Allen 
700 1 |a Paturkar, Avanti 
773 0 |t Journal of Biomedical Semantics  |g vol. 16 (2025), p. 1-13 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3247146211/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3247146211/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3247146211/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch