MAPD2: Mobile Application-based Pulmonary Disease Detector Using Electrocardiograms and Deep Learning

Guardado en:
Detalles Bibliográficos
Publicado en:The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings (2025), p. 498-499
Autor principal: Interlichia, Natasha
Otros Autores: Hari Sree Lalitha Vardhini Vanaparthi, Liu, Xudong, Nasseri, Mona, Helgeson, Scott
Publicado:
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Materias:
Acceso en línea:Citation/Abstract
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3247348523
003 UK-CbPIL
035 |a 3247348523 
045 2 |b d20250101  |b d20251231 
084 |a 228229  |2 nlm 
100 1 |a Interlichia, Natasha  |u University of North Florida,Jacksonville,Florida,USA 
245 1 |a MAPD2: Mobile Application-based Pulmonary Disease Detector Using Electrocardiograms and Deep Learning 
260 |b The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  |c 2025 
513 |a Conference Proceedings 
520 3 |a Conference Title: 2025 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)Conference Start Date: 2025 June 24Conference End Date: 2025 June 26Conference Location: New York, NY, USAPulmonary diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, are among the leading causes of death in the US. These lung diseases often are diagnosed by pulmonologists using pulmonary function testing (PFT). These extensive tests, often happen at a later stage of disease and can be inaccessible to many patients due to limited resources and availability. Nowadays hand-held medical devices (e.g., electrocardiogram (ECG) monitors) are already available to such patients and can yield ECG data that potentially could be used for diagnosis. To this end, we introduce MAPD2: a mobile application-based pulmonary disease detector using deep learning to diagnose pulmonary disease based on ECGs. In this paper, we focus on obstructive lung disease (OLD) to explore the use of easily accessible ECGs to train deep learning models to classify OLD. Furthermore, we designed and developed a client-server prototype of MAPD2 to visualize predictions of the selected trained models to patients and pulmonologists. 
651 4 |a United States--US 
653 |a Medical equipment 
653 |a Pulmonary functions 
653 |a Electrocardiography 
653 |a Deep learning 
653 |a Applications programs 
653 |a Mobile computing 
653 |a Availability 
653 |a Lung diseases 
653 |a Chronic obstructive pulmonary disease 
653 |a Medical devices 
653 |a Client server systems 
653 |a Respiratory function 
653 |a Social 
700 1 |a Hari Sree Lalitha Vardhini Vanaparthi  |u University of North Florida,Jacksonville,Florida,USA 
700 1 |a Liu, Xudong  |u University of North Florida,Jacksonville,Florida,USA 
700 1 |a Nasseri, Mona  |u University of North Florida,Jacksonville,Florida,USA 
700 1 |a Helgeson, Scott  |u Mayo Clinic,Jacksonville,Florida,USA 
773 0 |t The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings  |g (2025), p. 498-499 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3247348523/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch