Reinforcement learning-enhanced multi-objective optimization for sustainable coal blending in thermal power plants

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 9 (Sep 2025), p. e0331208
Autor principal: Li, Zhongfeng
Otros Autores: Liu, Lei, Zhao, Zhenlong, Mu, Shujie, Li, Dong, Zhuo, Yuting
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3247447026
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0331208  |2 doi 
035 |a 3247447026 
045 2 |b d20250901  |b d20250930 
084 |a 174835  |2 nlm 
100 1 |a Li, Zhongfeng 
245 1 |a Reinforcement learning-enhanced multi-objective optimization for sustainable coal blending in thermal power plants 
260 |b Public Library of Science  |c Sep 2025 
513 |a Journal Article 
520 3 |a Coal blending in thermal power plants is a complex multi-objective challenge involving economic, operational and environmental considerations. This study presents a Q-learning-enhanced NSGA-II (QLNSGA-II) algorithm that integrates the adaptive policy optimization of Q-learning with the elitist selection of NSGA-II to dynamically adjust crossover and mutation rates based on real-time performance metrics. A physics-based objective function takes into account the thermodynamics of ash fusion and the kinetics of pollutant emission, ensuring compliance with combustion efficiency and NOx limits. Benchmark tests on the Walking Fish Group (WFG) and Unconstrained Function (UF) suites show that QLNSGA-II achieves a 12.7% improvement in Inverted Generational Distance (IGD) and a 9.3% improvement in Hypervolume (HV) compared to prevailing algorithms. Industrial validation at the Huaneng Yingkou power plant confirms a 14.7% reduction in fuel cost and a 41% reduction in slagging incidence over conventional blending methods, backed by 12 months of operational data. Other benefits include a 24.8% reduction in sulphur content, a 6.9% increase in the plant’s net heat rate and annual savings of RMB 12.3 million, 2,150 tonnes of limestone and 38,500 tonnes of CO2-equivalent emissions. These results highlight QLNSGA-II as a scalable, robust solution for multi-objective coal blending, offering a promising way to improve the efficiency and sustainability of coal-fired power generation. 
651 4 |a China 
653 |a Pollutants 
653 |a Thermal power plants 
653 |a Algorithms 
653 |a Thermoelectricity 
653 |a Mutation 
653 |a Optimization 
653 |a Multiple objective analysis 
653 |a Machine learning 
653 |a Carbon dioxide 
653 |a Pareto optimum 
653 |a Energy consumption 
653 |a Industrial plant emissions 
653 |a Mathematical programming 
653 |a Coal 
653 |a Power plants 
653 |a Blending 
653 |a Thermodynamics 
653 |a Thermal power 
653 |a Performance measurement 
653 |a Genetic algorithms 
653 |a Limestone 
653 |a Carbon dioxide emissions 
653 |a Decision making 
653 |a Objective function 
653 |a Learning 
653 |a Linear programming 
653 |a Mutation rates 
653 |a Real time 
653 |a Coal-fired power plants 
653 |a Slagging 
653 |a Immunoglobulin D 
653 |a Combustion efficiency 
653 |a Ash 
653 |a Economic 
700 1 |a Liu, Lei 
700 1 |a Zhao, Zhenlong 
700 1 |a Mu, Shujie 
700 1 |a Li, Dong 
700 1 |a Zhuo, Yuting 
773 0 |t PLoS One  |g vol. 20, no. 9 (Sep 2025), p. e0331208 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3247447026/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3247447026/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3247447026/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch