Iterative rolling difference-Z-score and machine learning imputation for wind turbine foundation monitoring

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 9 (Sep 2025), p. e0331213
Autor principal: Li, Renjie
Otros Autores: Lu, Xiangxing, Zhao, Jizhang, Chen, Weibing, Huanwei Wei, Liu, Cong
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3247447238
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0331213  |2 doi 
035 |a 3247447238 
045 2 |b d20250901  |b d20250930 
084 |a 174835  |2 nlm 
100 1 |a Li, Renjie 
245 1 |a Iterative rolling difference-Z-score and machine learning imputation for wind turbine foundation monitoring 
260 |b Public Library of Science  |c Sep 2025 
513 |a Journal Article 
520 3 |a In engineering structure performance monitoring, capturing real-time on-site data and conducting precise analysis are critical for assessing structural condition and safety. However, equipment instability and complex on-site environments often lead to data anomalies and gaps, hindering accurate performance evaluation. This study, conducted within a wind farm reinforcement project in Shandong Province, addresses these challenges by focusing on anomaly detection and data imputation for weld nail strain, anchor cable axial force, and concrete strain. We propose an innovative iterative rolling difference-Z-score method for anomaly detection and a machine learning-based imputation framework combining linear interpolation with LightGBM. Experimental results show that the iterative rolling difference-Z-score method detects single-point and clustered anomalies with a Z-score threshold of 4, achieving robust performance even with 80% data loss. The imputation framework maintains low mean squared error (MSE) of 0.0214–0.0227 and root mean squared error (RMSE) of 0.14–0.15 for continuous missing data scenarios (60–200 points), with reliable reconstruction up to 50% data loss. This research provides a robust solution for ensuring the precision and integrity of wind farm monitoring data, enhancing long-term structural reliability in renewable energy applications. 
653 |a Wind power 
653 |a Accuracy 
653 |a Performance evaluation 
653 |a Wind farms 
653 |a Concrete 
653 |a Wind turbines 
653 |a Machine learning 
653 |a Standard scores 
653 |a Monitoring 
653 |a Learning algorithms 
653 |a Strain gauges 
653 |a Turbines 
653 |a Data integrity 
653 |a Renewable energy 
653 |a Missing data 
653 |a Data loss 
653 |a Axial forces 
653 |a Interpolation 
653 |a Root-mean-square errors 
653 |a Sensors 
653 |a Neural networks 
653 |a Onsite 
653 |a Data collection 
653 |a Engineering 
653 |a Anomalies 
653 |a Robustness (mathematics) 
653 |a Structural reliability 
653 |a Real time 
653 |a Statistical methods 
653 |a Environmental 
700 1 |a Lu, Xiangxing 
700 1 |a Zhao, Jizhang 
700 1 |a Chen, Weibing 
700 1 |a Huanwei Wei 
700 1 |a Liu, Cong 
773 0 |t PLoS One  |g vol. 20, no. 9 (Sep 2025), p. e0331213 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3247447238/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3247447238/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3247447238/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch