Dynamic Inversion Based Neural Network for Tracking Control of Known Affine in the Input Continuous-Time Nonlinear Systems

Salvato in:
Dettagli Bibliografici
Pubblicato in:ProQuest Dissertations and Theses (2025)
Autore principale: Nakka, Manasa
Pubblicazione:
ProQuest Dissertations & Theses
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3248394145
003 UK-CbPIL
020 |a 9798293820931 
035 |a 3248394145 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Nakka, Manasa 
245 1 |a Dynamic Inversion Based Neural Network for Tracking Control of Known Affine in the Input Continuous-Time Nonlinear Systems 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a A neural network (NN) tracking control for the known affine in the inputs continuous time nonlinear dynamic systems is investigated. For this purpose, steady states, stability and convergence to steady states of state variable trajectories are analyzed. It is depicted that the steady states of state variable trajectories of the system exist, and they are unique. On a global scale, the state variable trajectories are stable and convergent to the steady states. The tracking control provides finite convergence time of the system state variable trajectories to steady states and decreasing tracking errors. The convergence time is constrained by altering the learning rate parameter. Sliding modes of the state variable trajectories are analyzed. Computer simulations of the controller operation confirming theoretical derivations and illustrating its high performance are provided. The NN can be used for efficient tracking control in real time the known affine in the inputs continuous-time nonlinear systems with known internal dynamics. 
653 |a Computer engineering 
653 |a Computer science 
653 |a Information technology 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3248394145/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3248394145/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch