Probabilistic Separation Logics for Randomized Algorithms

Gardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor Principal: Bao, Jialu
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en liña:Citation/Abstract
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3248397520
003 UK-CbPIL
020 |a 9798293824359 
035 |a 3248397520 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Bao, Jialu 
245 1 |a Probabilistic Separation Logics for Randomized Algorithms 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Randomized algorithms are hard to test, thus accentuating the need for formal methods to ensure their correctness. When probabilistic separation logic was first developed as a formal method for proving probabilistic independence between program variables, it was unclear whether this approach generalizes to weaker forms of probabilistic separation used in program analysis.We first overview existing work in Bunched logic — the assertion logic underlying separation logic — and probabilistic separation logic for independence in chapter 2.In chapter 3, we extend probabilistic separation logic to reason about negative dependence, a relation in which an increase in one variable makes others less likely to increase. We demonstrate the utility of this program logic by analyzing hash-based data structures, such as Bloom filters.In chapter 4, we introduce a variation of probabilistic separation logic for reasoning about dependence and independence. Specifically, we use it to establish conditional independence between programs variables in simple programs.Last, in chapter 5, we present the unary fragment of BLUEBELL to provide a more ergonomic way to reason about conditional independence and independence. We illustrate its application through more intricate examples drawn from cryptography, security, and probabilistic graphical models.All the program logics developed in this thesis target imperative programs that can sample from probability distributions. 
653 |a Computer science 
653 |a Computer engineering 
653 |a Logic 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3248397520/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3248397520/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch