Unifying Generation, Reconstruction, and Representation: Generalized Diffusion With Adaptive Latent Encoding-Decoding

Сохранить в:
Библиографические подробности
Опубликовано в::ProQuest Dissertations and Theses (2025)
Главный автор: Feng, Zeyu
Опубликовано:
ProQuest Dissertations & Theses
Предметы:
Online-ссылка:Citation/Abstract
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3249542180
003 UK-CbPIL
020 |a 9798293830374 
035 |a 3249542180 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Feng, Zeyu 
245 1 |a Unifying Generation, Reconstruction, and Representation: Generalized Diffusion With Adaptive Latent Encoding-Decoding 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a The vast applications of deep generative models are anchored in three core capabilities—generating new instances, reconstructing inputs, and learning compact representations—across various data types, such as discrete text/protein sequences and continuous images. Existing model families, like Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), autoregressive models, and diffusion models, generally excel in specific capabilities and data types but fall short in others. We introduce the Generalized Encoding-Decoding Diffusion Probabilistic Models (EDDPM), that seamlessly integrates the core capabilities for broad applicability and enhanced performance. EDDPM generalizes the Gaussian noising-denoising in standard diffusion by introducing parameterized encoding-decoding. Crucially, EDDPM is compatible with the well-established diffusion model objective and training recipes, allowing effective learning of the encoder-decoder parameters jointly with diffusion. By choosing appropriate encoder/decoder (e.g., large language models), EDDPM naturally applies to different data types. Extensive experiments on text, proteins, and images demonstrate EDDPM’s flexibility to handle diverse data and tasks and its strong improvement over various existing models. 
653 |a Computer science 
653 |a Artificial intelligence 
653 |a Information technology 
653 |a Information science 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249542180/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249542180/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch