Dynamic BIM-Driven Framework for Adaptive and Optimized Construction Projects Scheduling Under Uncertainty
Guardado en:
| Publicado en: | Buildings vol. 15, no. 17 (2025), p. 3004-3026 |
|---|---|
| Autor principal: | |
| Otros Autores: | , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Conventional project scheduling techniques often rely on manual trial-and-error methods, which can lead to inaccurate evaluations. This study presents a dynamic scheduling framework to dynamically adjust scheduling decisions based on real-time productivity and budget constraints, resulting in improvement in scheduling accuracy in project management. By integrating advanced computational tools, the proposed approach addresses complex scheduling challenges. The model integrates Building Information Modeling (BIM)-based 3D data, productivity and process simulation, and optimization techniques to provide a unified scheduling tool that supports informed decision-making while considering real-time constraints, including productivity performance and budget limitations. The results demonstrated notable improvements over conventional methods, including a 13% increase in scheduling accuracy relative to the actual total project cost and a 34.4% improvement in scheduling accuracy based on the actual project duration, compared to the contractor’s baseline. The framework dynamically adjusts schedules and budgets according to current project conditions. These findings demonstrate its reliability as a decision-making tool for construction project management. The study introduces an integrative scheduling framework that adapts to real-time project conditions and is validated against actual project data. The integration of BIM, system dynamics, process simulation, and ACOR optimization provides a novel approach to construction scheduling. This methodology improves project management efficiency by automating scheduling adjustments based on ongoing progress. |
|---|---|
| ISSN: | 2075-5309 |
| DOI: | 10.3390/buildings15173004 |
| Fuente: | Engineering Database |