Schema-Agnostic Data Type Inference and Validation for Exchanging JSON-Encoded Construction Engineering Information

Gardado en:
Detalles Bibliográficos
Publicado en:Buildings vol. 15, no. 17 (2025), p. 3159-3181
Autor Principal: You Seokjoon
Outros autores: Ji, Hyon Wook, Kwak Hyunseok, Chung, Taewon, Bae Moongyo
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3249674934
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15173159  |2 doi 
035 |a 3249674934 
045 2 |b d20250101  |b d20251231 
084 |a 231437  |2 nlm 
100 1 |a You Seokjoon  |u Saman Corporation, Seoul 05774, Republic of Korea; sjyou@samaneng.com (S.Y.); b23025@hanmaceng.co.kr (H.W.J.) 
245 1 |a Schema-Agnostic Data Type Inference and Validation for Exchanging JSON-Encoded Construction Engineering Information 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Modern construction and infrastructure projects produce large volumes of heterogeneous data, including building information models, JSON sensor streams, and maintenance logs. Ensuring interoperability and data integrity across diverse software platforms requires standardized data exchange methods. However, traditional neutral object models, often constrained by rigid and incompatible schemas, are ill-suited to accommodate the heterogeneity and long-term nature of such data. Addressing this challenge, the study proposes a schema-less data exchange approach that improves flexibility in representing and interpreting infrastructure information. The method uses dynamic JSON-based objects, with infrastructure model definitions serving as semantic guidelines rather than rigid templates. Rule-based reasoning and dictionary-guided term mapping are employed to infer entity types from semi-structured data without enforcing prior schema conformance. Experimental evaluation across four datasets demonstrated exact entity-type match rates ranging from 61.4% to 76.5%, with overall success rates—including supertypes and ties—reaching up to 95.0% when weighted accuracy metrics were applied. Compared to a previous baseline, the method showed a notable improvement in exact matches while maintaining overall performance. These results confirm the feasibility of schema-less inference using domain dictionaries and indicate that incorporating schema-derived constraints could further improve accuracy and applicability in real-world infrastructure data environments. 
653 |a Software 
653 |a Interoperability 
653 |a Data exchange 
653 |a Ontology 
653 |a Infrastructure 
653 |a Semantic web 
653 |a Dictionaries 
653 |a Heterogeneity 
653 |a Data dictionaries 
653 |a Computer program integrity 
653 |a Accuracy 
653 |a Construction engineering 
653 |a Data models 
653 |a Decision making 
653 |a Inference 
653 |a Structured data 
653 |a Project management 
653 |a Engineering 
653 |a Digitization 
653 |a Construction industry 
653 |a Large language models 
653 |a Building information modeling 
653 |a Semantics 
700 1 |a Ji, Hyon Wook  |u Saman Corporation, Seoul 05774, Republic of Korea; sjyou@samaneng.com (S.Y.); b23025@hanmaceng.co.kr (H.W.J.) 
700 1 |a Kwak Hyunseok  |u Hanmac Engineering, Seoul 05774, Republic of Korea; hyunss97@hanmaceng.co.kr (H.K.); ctw@hanmaceng.co.kr (T.C.) 
700 1 |a Chung, Taewon  |u Hanmac Engineering, Seoul 05774, Republic of Korea; hyunss97@hanmaceng.co.kr (H.K.); ctw@hanmaceng.co.kr (T.C.) 
700 1 |a Bae Moongyo  |u Precast & Pile Tech Corporation, Seoul 05774, Republic of Korea 
773 0 |t Buildings  |g vol. 15, no. 17 (2025), p. 3159-3181 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249674934/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3249674934/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249674934/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch