Design of a Shipping Container-Based Home: Structural, Thermal, and Acoustic Conditioning

Guardado en:
Detalles Bibliográficos
Publicado en:Buildings vol. 15, no. 17 (2025), p. 3127-3155
Autor principal: Pinilla-Melo, Javier
Otros Autores: Aira-Zunzunegui, Jose Ramón, La Ferla Giuseppe, de la Prida Daniel, Navacerrada, María Ángeles
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3249675435
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15173127  |2 doi 
035 |a 3249675435 
045 2 |b d20250101  |b d20251231 
084 |a 231437  |2 nlm 
100 1 |a Pinilla-Melo, Javier  |u Departamento de Construcción y Tecnología Arquitectónicas (DCTA), Escuela Técnica Superior de Arquitectura (ETSAM), Universidad Politécnica de Madrid, Av. Juan de Herrera, 4, 28040 Madrid, Spain; javier.pinilla@upm.es (J.P.-M.); giuseppe.laferla@upm.es (G.L.F.) 
245 1 |a Design of a Shipping Container-Based Home: Structural, Thermal, and Acoustic Conditioning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The construction of buildings using shipping containers (SCs) is a way to extend their useful life. They are constructed by modifying the structure, thermal, and acoustic conditioning by improving the envelope and creating openings for lighting and ventilation purposes. This study explores the architectural adaptation of SCs to sustainable residential housing, focusing on structural, thermal, and acoustic performance. The project centers on a case study in Madrid, Spain, transforming four containers into a semi-detached, multilevel dwelling. The design emphasizes modular coordination, spatial flexibility, and structural reinforcement. The retrofit process includes the integration of thermal insulation systems in the ventilated façades and sandwich roof panels to counteract steel’s high thermal conductivity, enhancing energy efficiency. The acoustic performance of the container-based dwelling was assessed through in situ measurements of façade airborne sound insulation and floor impact noisedemonstrating compliance with building code requirements by means of laminated glazing, sealed joints, and floating floors. This represents a novel contribution, given the scarcity of experimental acoustic data for residential buildings made from shipping containers. Results confirm that despite the structure’s low surface mass, appropriate design strategies can achieve the required sound insulation levels, supporting the viability of this lightweight modular construction system. Structural calculations verify the building’s load-bearing capacity post-modification. Overall, the findings support container architecture as a viable and eco-efficient alternative to conventional construction, while highlighting critical design considerations such as thermal performance, sound attenuation, and load redistribution. The results offer valuable data for designers working with container-based systems and contribute to a strategic methodology for the sustainable refurbishment of modular housing. 
651 4 |a Europe 
653 |a Temporary housing 
653 |a Thermal conductivity 
653 |a Green buildings 
653 |a Payback periods 
653 |a Housing 
653 |a Adaptability 
653 |a Energy efficiency 
653 |a Thermal insulation 
653 |a Residential buildings 
653 |a Residential areas 
653 |a Architecture 
653 |a Sound attenuation 
653 |a Glazing 
653 |a Modularity 
653 |a Design 
653 |a In situ measurement 
653 |a Energy consumption 
653 |a Facades 
653 |a Conditioning 
653 |a Shipping 
653 |a Containers 
653 |a Simulation 
653 |a Construction 
653 |a Acoustic insulation 
653 |a Building codes 
653 |a Cargo containers 
653 |a Sustainable development 
653 |a Modular systems 
653 |a Acoustics 
653 |a Buildings 
653 |a Retrofitting 
653 |a Modular structures 
653 |a Insulation 
653 |a Cost control 
653 |a Modular construction 
653 |a Bearing capacity 
653 |a Climate 
653 |a Student housing 
700 1 |a Aira-Zunzunegui, Jose Ramón  |u Departamento de Construcción y Tecnología Arquitectónicas (DCTA), Escuela Técnica Superior de Arquitectura (ETSAM), Universidad Politécnica de Madrid, Av. Juan de Herrera, 4, 28040 Madrid, Spain; javier.pinilla@upm.es (J.P.-M.); giuseppe.laferla@upm.es (G.L.F.) 
700 1 |a La Ferla Giuseppe  |u Departamento de Construcción y Tecnología Arquitectónicas (DCTA), Escuela Técnica Superior de Arquitectura (ETSAM), Universidad Politécnica de Madrid, Av. Juan de Herrera, 4, 28040 Madrid, Spain; javier.pinilla@upm.es (J.P.-M.); giuseppe.laferla@upm.es (G.L.F.) 
700 1 |a de la Prida Daniel  |u Grupo de Acústica Arquitectónica, Escuela Técnica Superior de Arquitectura (ETSAM), Universidad Politécnica de Madrid, Av. Juan de Herrera 4, 28030 Madrid, Spain; daniel.prida@upm.es (D.d.l.P.); mdelosangeles.navacerrada@upm.es (M.Á.N.) 
700 1 |a Navacerrada, María Ángeles  |u Grupo de Acústica Arquitectónica, Escuela Técnica Superior de Arquitectura (ETSAM), Universidad Politécnica de Madrid, Av. Juan de Herrera 4, 28030 Madrid, Spain; daniel.prida@upm.es (D.d.l.P.); mdelosangeles.navacerrada@upm.es (M.Á.N.) 
773 0 |t Buildings  |g vol. 15, no. 17 (2025), p. 3127-3155 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249675435/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3249675435/fulltextwithgraphics/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249675435/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch