Lucas-PoST: A Secure, Efficient, and Robust Proof of Storage-Time Protocol Based on Lucas Sequences

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রকাশিত:Electronics vol. 14, no. 17 (2025), p. 3417-3438
প্রধান লেখক: Jiang Zihao
অন্যান্য লেখক: Ye Jiale, Ren Yongjun
প্রকাশিত:
MDPI AG
বিষয়গুলি:
অনলাইন ব্যবহার করুন:Citation/Abstract
Full Text + Graphics
Full Text - PDF
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!

MARC

LEADER 00000nab a2200000uu 4500
001 3249684445
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14173417  |2 doi 
035 |a 3249684445 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Jiang Zihao  |u School of Computer Science, School of Cyber Science and Engineering, Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China 
245 1 |a Lucas-PoST: A Secure, Efficient, and Robust Proof of Storage-Time Protocol Based on Lucas Sequences 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Proof of Storage-Time (PoST) is the core verification mechanism for blockchain data storage, ensuring the integrity and continuous availability of data throughout the storage period. Although the current mainstream Compact Proofs of Storage-Time (cPoST) and Practical and Client-Friendly Proof of Storage-Time (ePoST) solutions have seen significant progress in engineering implementation, their security fundamentally relies on the algebraic structure assumptions underlying their verifiable delay function (VDF) components. In addition, if there are small-order elements that can be efficiently calculated in the underlying group structure, it will directly lead to the failure of the soundness properties of the VDF; thus, the entire PoST system will face systemic security risks. To address the above issues, we propose an innovative PoST protocol based on the modular Lucas sequence. By constructing a delay function through the modular Lucas sequence, the security condition is transferred from the strong security assumption to the weak security assumption, which enhances the security of the protocol: when the protocol encounters an algorithmic breakthrough that causes the modular square security assumption to fail, the soundness of the protocol can still be guaranteed. Secondly, we map all elements to the target <inline-formula>λ</inline-formula>-strong groups through homomorphic mapping technology, a domain input restriction mechanism, and a non-unique representation strategy of elements, effectively avoiding the security risks caused by small-order elements in the group structure. Compared with traditional protocols, our protocol achieves significant improvements in security and reliability, providing a more robust framework for decentralized storage and data verification. 
653 |a Forgery 
653 |a Data integrity 
653 |a Metadata 
653 |a Verification 
653 |a Data storage 
653 |a Robustness (mathematics) 
653 |a Security 
653 |a Protocol 
653 |a Cloud computing 
700 1 |a Ye Jiale  |u School of Computer Science, School of Cyber Science and Engineering, Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China 
700 1 |a Ren Yongjun  |u School of Computer Science, School of Cyber Science and Engineering, Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China 
773 0 |t Electronics  |g vol. 14, no. 17 (2025), p. 3417-3438 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249684445/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3249684445/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249684445/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch