An Ensemble Learning Approach for Facial Emotion Recognition Based on Deep Learning Techniques

Salvato in:
Dettagli Bibliografici
Pubblicato in:Electronics vol. 14, no. 17 (2025), p. 3415-3445
Autore principale: Almubarak Manal
Altri autori: Alsulaiman, Fawaz A
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3249684517
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14173415  |2 doi 
035 |a 3249684517 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Almubarak Manal 
245 1 |a An Ensemble Learning Approach for Facial Emotion Recognition Based on Deep Learning Techniques 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Facial emotion recognition (FER) is an evolving sub-field of computer vision and affective computing. It entails the development of algorithms and models to detect, analyze, and interpret facial expressions, thereby determining individuals’ emotional states. This paper explores the effectiveness of transfer learning using the EfficientNet-B0 convolutional neural network for FER, alongside the utilization of stacking techniques. The pretrained EfficientNet-B0 model is employed to train on a dataset comprising a diverse range of natural human face images for emotion recognition. This dataset consists of grayscale images categorized into eight distinct emotion classes. Our approach involves fine-tuning the pretrained EfficientNet-B0 model, adapting its weights and layers to capture subtle facial expressions. Moreover, this study utilizes ensemble learning by integrating transfer learning from pretrained models, a strategic tuning approach, binary classifiers, and a meta-classifier. Our approach achieves superior performance in accurately identifying and classifying emotions within facial images. Experimental results for the meta-classifier demonstrate 100% accuracy on the test set. For further assessment, we also train our meta-classifier on a Cohn–Kanade (CK+) dataset, achieving 92% accuracy on the test set. These findings highlight the effectiveness and potential of employing transfer learning and stacking techniques with EfficientNet-B0 for FER tasks. 
653 |a Accuracy 
653 |a Datasets 
653 |a Emotional factors 
653 |a Affective computing 
653 |a Test sets 
653 |a Emotion recognition 
653 |a Artificial neural networks 
653 |a Support vector machines 
653 |a Effectiveness 
653 |a Images 
653 |a Emotions 
653 |a Computer vision 
653 |a Automation 
653 |a Deep learning 
653 |a Machine learning 
653 |a Ensemble learning 
700 1 |a Alsulaiman, Fawaz A 
773 0 |t Electronics  |g vol. 14, no. 17 (2025), p. 3415-3445 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249684517/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3249684517/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249684517/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch