Network-Aware Smart Scheduling for Semi-Automated Ceramic Production via Improved Discrete Hippopotamus Optimization
Guardado en:
| Publicado en: | Electronics vol. 14, no. 17 (2025), p. 3543-3573 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | The increasing integration of automation and intelligent sensing technologies in daily-use ceramic manufacturing poses new challenges for efficient scheduling under hybrid flow-shop and shared-kiln constraints. To address these challenges, this study proposes a Mixed-Integer Linear Programming (MILP) model and an Improved Discrete Hippopotamus Optimization (IDHO) algorithm designed for smart, network-aware production environments. The MILP formulation captures key practical features such as batch processing, no-idle kiln constraints, and machine re-entry dynamics. The IDHO algorithm enhances global search performance via segment-based encoding, nonlinear population reduction, and operation-specific mutation strategies, while a parallel evaluation framework accelerates computational efficiency, making the solution viable for industrial-scale, time-sensitive scenarios. The experimental results from 12 benchmark cases demonstrate that IDHO achieves superior performance over six representative metaheuristics (e.g., PSO, GWO, Jaya, DBO), with an average ARPD of 1.04%, statistically significant improvements (p < 0.05), and large effect sizes (Cohen’s d > 0.8). Compared to the commercial solver CPLEX, IDHO provides near-optimal results with substantially lower runtime. The proposed approach contributes to the development of intelligent networked scheduling systems for cyber-physical manufacturing environments, enabling responsive, scalable, and data-driven optimization in smart sensing-enabled production settings. |
|---|---|
| ISSN: | 2079-9292 |
| DOI: | 10.3390/electronics14173543 |
| Fuente: | Advanced Technologies & Aerospace Database |