Human-in-the-Loop XAI for Predictive Maintenance: A Systematic Review of Interactive Systems and Their Effectiveness in Maintenance Decision-Making

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 17 (2025), p. 3384-3413
Autor principal: Risqi, Amaliah Nuuraan
Otros Autores: Tjahjono Benny, Palade Vasile
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3249684698
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14173384  |2 doi 
035 |a 3249684698 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Risqi, Amaliah Nuuraan  |u Centre for E-Mobility and Clean Growth, Coventry University, Coventry CV1 5FB, UK; amaliahn@coventry.ac.uk 
245 1 |a Human-in-the-Loop XAI for Predictive Maintenance: A Systematic Review of Interactive Systems and Their Effectiveness in Maintenance Decision-Making 
260 |b MDPI AG  |c 2025 
513 |a Literature Review 
520 3 |a Artificial intelligence (AI) plays a pivotal role in Industry 4.0, with predictive maintenance (PdM) emerging as a core application for improving operational efficiency by reducing unplanned downtime and extending asset life. Despite these advancements, the black-box nature of AI models remains a significant barrier to adoption, as industry stakeholders require systems that are both transparent and trustworthy. This study presents a systematic literature review examining how human-in-the-loop explainable AI (HITL-XAI) approaches can enhance the effectiveness and adoption of AI systems in PdM contexts. This review followed the PRISMA methodology, employing predefined search strings across Scopus, ProQuest, and EBSCO databases. Sixty-three peer-reviewed journal articles, published between 2019 and early 2025, were included in the final analysis. The selected studies span various domains, including industrial manufacturing, energy, and transportation, with findings synthesized through both descriptive and thematic analyses. A key gap identified is the limited empirical exploration of generative AI (GenAI) in improving the usability, interpretability, and trustworthiness of HITL-XAI systems in PdM applications. This review outlines actionable insights for integrating explainability and GenAI into existing rule-based PdM systems to support more adaptive and reliable maintenance strategies. Ultimately, the findings underscore the importance of designing HITL-XAI systems that not only demonstrate high model performance but are also effectively aligned with operational workflows and the cognitive needs of maintenance personnel. 
653 |a Industrial applications 
653 |a Collaboration 
653 |a System effectiveness 
653 |a Literature reviews 
653 |a Artificial intelligence 
653 |a Explainable artificial intelligence 
653 |a Downtime 
653 |a Decision making 
653 |a Predictive maintenance 
653 |a Generative artificial intelligence 
653 |a Interactive systems 
653 |a Industry 4.0 
700 1 |a Tjahjono Benny  |u Centre for E-Mobility and Clean Growth, Coventry University, Coventry CV1 5FB, UK; amaliahn@coventry.ac.uk 
700 1 |a Palade Vasile  |u Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry CV1 5FB, UK; ab5839@coventry.ac.uk 
773 0 |t Electronics  |g vol. 14, no. 17 (2025), p. 3384-3413 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249684698/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3249684698/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249684698/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch