Beginner-Friendly Review of Research on R-Based Energy Forecasting: Insights from Text Mining

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 17 (2025), p. 3513-3572
Autor principal: Kim Minjoong
Otros Autores: Kim Hyeonwoo, Moon Jihoon
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3249684852
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14173513  |2 doi 
035 |a 3249684852 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Kim Minjoong  |u Department of ICT Convergence, Soonchunhyang University, Asan 31538, Republic of Korea; wooni3804@sch.ac.kr 
245 1 |a Beginner-Friendly Review of Research on R-Based Energy Forecasting: Insights from Text Mining 
260 |b MDPI AG  |c 2025 
513 |a Literature Review 
520 3 |a Data-driven forecasting is becoming increasingly central to modern energy management, yet nonspecialists without a background in artificial intelligence (AI) face significant barriers to entry. While Python is the dominant machine learning language, R remains a practical and accessible tool for users with expertise in statistics, engineering, or domain-specific analysis. To inform tool selection, we first provide an evidence-based comparison of R with major alternatives before reviewing 49 peer-reviewed articles published between 2020 and 2025 in Science Citation Index Expanded (SCIE)-level journals that utilized R for energy forecasting tasks, including electricity (regional and site-level), solar, wind, thermal energy, and natural gas. Despite such growth, the field still lacks a systematic, cross-domain synthesis that clarifies which R-based methods prevail, how accessible workflows are implemented, and where methodological gaps remain; this motivated our use of text mining. Text mining techniques were employed to categorize the literature according to forecasting objectives, modeling methods, application domains, and tool usage patterns. The results indicate that tree-based ensemble learning models—e.g., random forests, gradient boosting, and hybrid variants—are employed most frequently, particularly for solar and short-term load forecasting. Notably, few studies incorporated automated model selection or explainable AI; however, there is a growing shift toward interpretable and beginner-friendly workflows. This review offers a practical reference for nonexperts seeking to apply R in energy forecasting contexts, emphasizing accessible modeling strategies and reproducible practices. We also curate example R scripts, workflow templates, and a study-level link catalog to support replication. The findings of this review support the broader democratization of energy analytics by identifying trends and methodologies suitable for users without advanced AI training. Finally, we synthesize domain-specific evidence and outline the text-mining pipeline, present visual keyword profiles and comparative performance tables that surface prevailing strategies and unmet needs, and conclude with practical guidance and targeted directions for future research. 
653 |a Sparsity 
653 |a Energy management 
653 |a Software 
653 |a Accessibility 
653 |a Collaboration 
653 |a Forecasting 
653 |a Trends 
653 |a Data mining 
653 |a Modelling 
653 |a Python 
653 |a Data science 
653 |a Machine learning 
653 |a Time series 
653 |a Explainable artificial intelligence 
653 |a Energy consumption 
653 |a Climate change 
653 |a Programming languages 
653 |a Gas pipelines 
653 |a Thermal energy 
653 |a Engineering 
653 |a Natural language processing 
653 |a Folklore 
653 |a Literature reviews 
653 |a Natural gas 
653 |a Building management systems 
653 |a Ensemble learning 
653 |a Reproducibility 
653 |a Independent study 
700 1 |a Kim Hyeonwoo  |u Department of Computer Science and Engineering, Soonchunhyang University, Asan 31538, Republic of Korea 
700 1 |a Moon Jihoon  |u Department of Data Science, Duksung Women’s University, Seoul 01369, Republic of Korea 
773 0 |t Electronics  |g vol. 14, no. 17 (2025), p. 3513-3572 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249684852/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3249684852/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249684852/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch