Effect of Deep Recurrent Architectures on Code Vulnerability Detection: Performance Evaluation for SQL Injection in Python

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 17 (2025), p. 3436-3455
Autor principal: Slotkienė Asta
Otros Autores: Adomas, Poška, Stefanovič Pavel, Ramanauskaitė Simona
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3249685070
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14173436  |2 doi 
035 |a 3249685070 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Slotkienė Asta 
245 1 |a Effect of Deep Recurrent Architectures on Code Vulnerability Detection: Performance Evaluation for SQL Injection in Python 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Security defects in software code can lead to situations that compromise web-based systems, data security, service availability, and the reliability of functionality. Therefore, it is crucial to detect code vulnerabilities as early as possible. During the research, the architectures of the deep learning models, peephole LSTM, GRU-Z, and GRU-LN, their element regularizations, and their hyperparameter settings were analysed to achieve the highest performance in detecting SQL injection vulnerabilities in Python code. The results of the research showed that after investigating the effect of hyperparameters on Word2Vector embeddings and applying the most efficient one, the peephole LSTM, delivered the highest performance (F1 = 0.90)—surpassing GRU-Z (0.88) and GRU-LN (0.878)—thereby confirming that the access of the peephole connections to the cell state produces the highest performance score in the architecture of the peephole LSTM model. Comparison of the results with other research indicates that the use of the selected deep learning models and the suggested research methodology allows for improving the performance in detecting SQL injection vulnerabilities in Python-based web applications, with an F1 score reaching 0.90, which is approximately 10% higher than achieved by other researchers. 
653 |a Research methodology 
653 |a Python 
653 |a Deep learning 
653 |a Datasets 
653 |a Performance evaluation 
653 |a Security 
653 |a Automation 
653 |a Applications programs 
653 |a Open source software 
653 |a Query languages 
653 |a Systems development 
700 1 |a Adomas, Poška 
700 1 |a Stefanovič Pavel 
700 1 |a Ramanauskaitė Simona 
773 0 |t Electronics  |g vol. 14, no. 17 (2025), p. 3436-3455 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249685070/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3249685070/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249685070/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch