High-Efficiency Polysulfide Trapping with g-C3N4/CNT Hybrids for Superior Lithium-Sulfur Batteries

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:Energies vol. 18, no. 17 (2025), p. 4462-4476
Váldodahkki: Chen, Zhen
Eará dahkkit: Meng Hao, Wang, Jiayi, Yang, Lin, Wang, Xin, Chen, Zhongwei
Almmustuhtton:
MDPI AG
Fáttát:
Liŋkkat:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3249685177
003 UK-CbPIL
022 |a 1996-1073 
024 7 |a 10.3390/en18174462  |2 doi 
035 |a 3249685177 
045 2 |b d20250101  |b d20251231 
084 |a 231459  |2 nlm 
100 1 |a Chen, Zhen  |u Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo 315100, China 
245 1 |a High-Efficiency Polysulfide Trapping with g-C<sub>3</sub>N<sub>4</sub>/CNT Hybrids for Superior Lithium-Sulfur Batteries 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Commercialization of lithium-sulfur (Li-S) batteries is critically hampered by the severe lithium polysulfide shuttle effect. Hence, designing multifunctional materials that synergistically provide physical confinement of polysulfides, chemical entrapment, and catalytic promotion is a viable route for improving Li-S battery performance. Herein, graphitic carbon nitride (g-C3N4) with abundant nitrogen atoms was used as the chemical adsorption material to realize a “physical-chemical” dual confinement for polysulfides. Furthermore, the integration of CNTs with g-C3N4 is intended to substantially enhance the conductivity of the cathode material. Consequently, the synthesized g-C3N4/CNT composite, which functions as an effective polysulfide immobilizer, significantly improved the cycling stability and discharge capacity of Li-S batteries. This enhancement can be attributed to its potent adsorption and catalytic activities. Li-S cells utilizing g-C3N4/CNT cathodes exhibit exceptional discharge capacity and notable rate capability. Specifically, after 100 cycles at 0.2 C, the discharge capacity was 701 mAh g−1. Furthermore, even at a high rate of 2 C, a substantial capacity of 457 mAh g−1 was retained. 
651 4 |a United States--US 
651 4 |a Germany 
651 4 |a China 
653 |a Electrolytes 
653 |a Electrons 
653 |a Electrodes 
653 |a Spectrum analysis 
653 |a Carbon 
653 |a Conductivity 
653 |a Adsorption 
653 |a Microscopy 
653 |a Sulfur 
653 |a Design 
653 |a Batteries 
653 |a Voltammetry 
653 |a Energy storage 
653 |a Graphene 
653 |a Lithium 
653 |a Nitrogen 
700 1 |a Meng Hao  |u Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo 315100, China 
700 1 |a Wang, Jiayi  |u Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo 315100, China 
700 1 |a Yang, Lin  |u Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo 315100, China 
700 1 |a Wang, Xin  |u Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo 315100, China 
700 1 |a Chen, Zhongwei  |u Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China 
773 0 |t Energies  |g vol. 18, no. 17 (2025), p. 4462-4476 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249685177/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3249685177/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249685177/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch