Structural damage identification using single-point vibration data processing

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 9 (Sep 2025), p. e0330909
Autor principal: Huan-Yi Chu
Otros Autores: Meng-Hsuan Tien
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3249690291
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0330909  |2 doi 
035 |a 3249690291 
045 2 |b d20250901  |b d20250930 
084 |a 174835  |2 nlm 
100 1 |a Huan-Yi Chu 
245 1 |a Structural damage identification using single-point vibration data processing 
260 |b Public Library of Science  |c Sep 2025 
513 |a Journal Article 
520 3 |a Structural health monitoring and damage identification are essential for ensuring the safety and performance of engineering systems. Cracks introduce nonlinear dynamic behavior due to intermittent contact from the opening and closing of crack surfaces, which limits the effectiveness of conventional linear identification methods. Moreover, many existing approaches rely on multiple distributed sensors, which may be impractical in real-world applications. To address these limitations, this study investigates the feasibility of identifying both crack depth and location using single-point vibration measurements. A recently developed nonlinear analysis framework is employed to simulate the dynamic response of a cracked beam, and spectrograms of the tip response under various crack conditions are generated using the short-time Fourier transform. These spectrograms are then used to train a convolutional neural network for damage identification. Numerical results demonstrate that the proposed method achieves high coefficients of determination () between the true and identified values for both crack depth and location, provided the training data sufficiently cover damage conditions within the defined parameter ranges. Furthermore, data augmentation is shown to enhance identification accuracy, underscoring the method’s potential for implementation with limited vibration measurements. 
653 |a Data processing 
653 |a Deep learning 
653 |a Dynamic response 
653 |a Vibration monitoring 
653 |a Identification methods 
653 |a Vibration measurement 
653 |a Identification 
653 |a Artificial neural networks 
653 |a Nonlinear analysis 
653 |a Neural networks 
653 |a Safety engineering 
653 |a Damage detection 
653 |a Cracks 
653 |a Feasibility studies 
653 |a Structural damage 
653 |a Fourier transforms 
653 |a Vibration 
653 |a Structural health monitoring 
653 |a Machine learning 
653 |a Parameter identification 
653 |a Data augmentation 
653 |a Artificial intelligence 
653 |a Spectrograms 
653 |a Sensors 
653 |a Vibration analysis 
653 |a Algorithms 
653 |a Dynamical systems 
653 |a Nonlinear dynamics 
653 |a Environmental 
700 1 |a Meng-Hsuan Tien 
773 0 |t PLoS One  |g vol. 20, no. 9 (Sep 2025), p. e0330909 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249690291/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3249690291/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249690291/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch