A Multiple-Scale Space–Time Collocation Trefftz Method for Two-Dimensional Wave Equations

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Mathematics vol. 13, no. 17 (2025), p. 2831-2848
Kaituhi matua: Li-Dan, Hong
Ētahi atu kaituhi: Chen-Yu, Zhang, Yeih Weichung, Cheng-Yu, Ku, He, Xi, Chang-Kai, Lu
I whakaputaina:
MDPI AG
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3249691728
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13172831  |2 doi 
035 |a 3249691728 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Li-Dan, Hong  |u School of Smart Marine Science and Technology, Fujian University of Technology, Fuzhou 350118, China 
245 1 |a A Multiple-Scale Space–Time Collocation Trefftz Method for Two-Dimensional Wave Equations 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper presents a semi-analytical, mesh-free space–time Collocation Trefftz Method (SCTM) for solving two-dimensional (2D) wave equations. Given prescribed initial and boundary data, collocation points are placed on the space–time (ST) boundary, reformulating the initial value problem as an equivalent boundary value problem and enabling accurate reconstruction of wave propagation in complex domains. The main contributions of this work are twofold: (i) a unified ST Trefftz basis that treats time as an analytic variable and enforces the wave equation in the full ST domain, thereby eliminating time marching and its associated truncation-error accumulation; and (ii) a Multiple-Scale Characteristic-Length (MSCL) grading strategy that systematically regularizes the collocation linear system. Several numerical examples, including benchmark tests, validate the method’s feasibility, effectiveness, and accuracy. For both forward and inverse problems, the solutions produced by the method closely match exact results, confirming its accuracy. Overall, the results reveal the method’s feasibility, accuracy, and stability across both forward and inverse problems and for varied geometries. 
653 |a Propagation 
653 |a Finite volume method 
653 |a Accuracy 
653 |a Partial differential equations 
653 |a Inverse problems 
653 |a Time marching 
653 |a Collocation methods 
653 |a Linear systems 
653 |a Numerical analysis 
653 |a Wave propagation 
653 |a Finite element analysis 
653 |a Trefftz method 
653 |a Systems stability 
653 |a Feasibility 
653 |a Wave equations 
653 |a Boundary conditions 
653 |a Collocation 
653 |a Linear equations 
653 |a Boundary value problems 
700 1 |a Chen-Yu, Zhang  |u School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou 350118, China 
700 1 |a Yeih Weichung  |u Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, Taiwanchkst26@mail.ntou.edu.tw (C.-Y.K.) 
700 1 |a Cheng-Yu, Ku  |u Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, Taiwanchkst26@mail.ntou.edu.tw (C.-Y.K.) 
700 1 |a He, Xi  |u Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources, Guangzhou 510300, China 
700 1 |a Chang-Kai, Lu  |u Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources, Guangzhou 510300, China 
773 0 |t Mathematics  |g vol. 13, no. 17 (2025), p. 2831-2848 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249691728/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3249691728/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249691728/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch