A Sixth-Order Iterative Scheme Through Weighted Rational Approximations for Computing the Matrix Sign Function

Збережено в:
Бібліографічні деталі
Опубліковано в::Mathematics vol. 13, no. 17 (2025), p. 2849-2864
Автор: Zhang, Ce
Інші автори: Zhao, Bo, Ren Wenjing, Cao Ruosong, Liu, Tao
Опубліковано:
MDPI AG
Предмети:
Онлайн доступ:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3249692154
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13172849  |2 doi 
035 |a 3249692154 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Zhang, Ce  |u Modern Educational Technology Center, Changchun Guanghua University, Changchun 130033, China; zhangce@ghu.edu.cn 
245 1 |a A Sixth-Order Iterative Scheme Through Weighted Rational Approximations for Computing the Matrix Sign Function 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This work introduces a sixth-order multi-step iterative algorithm for obtaining the matrix sign function of nonsingular matrices. The presented methodology employs optimized rational approximations combined with strategically formulated weight functions to achieve both computational efficiency and numerical precision. We present a convergence study that includes the analytical derivation of error terms, formally proving the sixth-order convergence characteristics. Numerical simulations substantiate the theoretical results and demonstrate the algorithm’s advantage over current state-of-the-art approaches in terms of both accuracy and computational performance. 
653 |a Control theory 
653 |a Approximation 
653 |a Iterative algorithms 
653 |a Methods 
653 |a Eigenvalues 
653 |a Convergence 
653 |a Algorithms 
653 |a Weighting functions 
653 |a Iterative methods 
653 |a Linear algebra 
700 1 |a Zhao, Bo  |u School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; 202215092@stu.neuq.edu.cn (B.Z.); 2472156@stu.neu.edu.cn (W.R.); 2401995@stu.neu.edu.cn (R.C.) 
700 1 |a Ren Wenjing  |u School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; 202215092@stu.neuq.edu.cn (B.Z.); 2472156@stu.neu.edu.cn (W.R.); 2401995@stu.neu.edu.cn (R.C.) 
700 1 |a Cao Ruosong  |u School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; 202215092@stu.neuq.edu.cn (B.Z.); 2472156@stu.neu.edu.cn (W.R.); 2401995@stu.neu.edu.cn (R.C.) 
700 1 |a Liu, Tao  |u School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; 202215092@stu.neuq.edu.cn (B.Z.); 2472156@stu.neu.edu.cn (W.R.); 2401995@stu.neu.edu.cn (R.C.) 
773 0 |t Mathematics  |g vol. 13, no. 17 (2025), p. 2849-2864 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249692154/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3249692154/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249692154/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch