SCSU–GDO: Superpixel Collaborative Sparse Unmixing with Graph Differential Operator for Hyperspectral Imagery

Sparad:
Bibliografiska uppgifter
I publikationen:Remote Sensing vol. 17, no. 17 (2025), p. 3088-3108
Huvudupphov: Yang Kaijun
Övriga upphov: Zhao, Zhixin, Yang, Qishen, Feng Ruyi
Utgiven:
MDPI AG
Ämnen:
Länkar:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3249714072
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17173088  |2 doi 
035 |a 3249714072 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Yang Kaijun  |u School of Computer Science, China University of Geosciences, Wuhan 430074, China; apple_hacker@163.com (K.Y.); zxzhao126@gmail.com (Z.Z.); 1202221624@cug.edu.cn (Q.Y.) 
245 1 |a SCSU–GDO: Superpixel Collaborative Sparse Unmixing with Graph Differential Operator for Hyperspectral Imagery 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In recent years, remarkable advancements have been achieved in hyperspectral unmixing (HU). Sparse unmixing, in which models mix pixels as linear combinations of endmembers and their corresponding fractional abundances, has become a dominant paradigm in hyperspectral image analysis. To address the inherent limitations of spectral-only approaches, spatial contextual information has been integrated into unmixing. In this article, a superpixel collaborative sparse unmixing algorithm with graph differential operator (SCSU–GDO), is proposed, which effectively integrates superpixel-based local collaboration with graph differential spatial regularization. The proposed algorithm contains three key steps. First, superpixel segmentation partitions the hyperspectral image into homogeneous regions, leveraging boundary information to preserve structural coherence. Subsequently, a local collaborative weighted sparse regression model is formulated to jointly enforce data fidelity and sparsity constraints on abundance estimation. Finally, to enhance spatial consistency, the Laplacian matrix derived from graph learning is decomposed into a graph differential operator, adaptively capturing local smoothness and structural discontinuities within the image. Comprehensive experiments on three datasets prove the accuracy, robustness, and practical efficacy of the proposed method. 
653 |a Sparsity 
653 |a Regularization 
653 |a Image analysis 
653 |a Deep learning 
653 |a Collaboration 
653 |a Smoothness 
653 |a Algorithms 
653 |a Image segmentation 
653 |a Operators (mathematics) 
653 |a Regression models 
653 |a Optimization 
653 |a Image processing 
653 |a Differential equations 
653 |a Libraries 
653 |a Hyperspectral imaging 
700 1 |a Zhao, Zhixin  |u School of Computer Science, China University of Geosciences, Wuhan 430074, China; apple_hacker@163.com (K.Y.); zxzhao126@gmail.com (Z.Z.); 1202221624@cug.edu.cn (Q.Y.) 
700 1 |a Yang, Qishen  |u School of Computer Science, China University of Geosciences, Wuhan 430074, China; apple_hacker@163.com (K.Y.); zxzhao126@gmail.com (Z.Z.); 1202221624@cug.edu.cn (Q.Y.) 
700 1 |a Feng Ruyi  |u School of Computer Science, China University of Geosciences, Wuhan 430074, China; apple_hacker@163.com (K.Y.); zxzhao126@gmail.com (Z.Z.); 1202221624@cug.edu.cn (Q.Y.) 
773 0 |t Remote Sensing  |g vol. 17, no. 17 (2025), p. 3088-3108 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249714072/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3249714072/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249714072/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch