Sensor-Oriented Framework for Underwater Acoustic Signal Classification Using EMD–Wavelet Filtering and Bayesian-Optimized Random Forest

Guardado en:
Detalles Bibliográficos
Publicado en:Sensors vol. 25, no. 17 (2025), p. 5336-5356
Autor principal: Babichev Sergii
Otros Autores: Yarema Oleg, Khomenko Yevheniy, Senchyshen Denys, Durnyak Bohdan
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3249714496
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s25175336  |2 doi 
035 |a 3249714496 
045 2 |b d20250101  |b d20251231 
084 |a 231630  |2 nlm 
100 1 |a Babichev Sergii  |u Department of Physics, Kherson State University, 73008 Kherson, Ukraine; yekhomenko@ksu.ks.ua (Y.K.); dsenchishen@ksu.ks.ua (D.S.) 
245 1 |a Sensor-Oriented Framework for Underwater Acoustic Signal Classification Using EMD–Wavelet Filtering and Bayesian-Optimized Random Forest 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Ship acoustic signal classification is essential for vessel identification, underwater navigation, and maritime security. Traditional methods struggle with the non-stationary nature and noise of ship acoustic signals, reducing classification accuracy. To address these challenges, we propose an automated pipeline that integrates Empirical Mode Decomposition (EMD), adaptive wavelet filtering, feature selection, and a Bayesian-optimized Random Forest classifier. The framework begins with EMD-based decomposition, where the most informative Intrinsic Mode Functions (IMFs) are selected using Signal-to-Noise Ratio (SNR) analysis. Wavelet filtering is applied to reduce noise, with optimal wavelet parameters determined via SNR and Stein’s Unbiased Risk Estimate (SURE) criteria. Features extracted from statistical, frequency domain (FFT), and time–frequency (wavelet) metrics are ranked, and the top 11 most important features are selected for classification. A Bayesian-optimized Random Forest classifier is trained using the extracted features, ensuring optimal hyperparameter selection and reducing computational complexity. The classification results are further enhanced using a majority voting strategy, improving the accuracy of the final object identification. The proposed approach demonstrates high accuracy, improved noise suppression, and robust classification performance. The methodology is scalable, computationally efficient, and suitable for real-time maritime applications. 
653 |a Machine learning 
653 |a Accuracy 
653 |a Datasets 
653 |a Deep learning 
653 |a Maritime industry 
653 |a Fourier transforms 
653 |a Signal to noise ratio 
653 |a Optimization techniques 
653 |a Real time 
653 |a Neural networks 
653 |a Signal processing 
653 |a Classification 
653 |a Algorithms 
653 |a Automation 
653 |a Acoustics 
653 |a Statistical methods 
700 1 |a Yarema Oleg  |u Department of Digital Economy and Business Analytics, Ivan Franko National University, 79000 Lviv, Ukraine; oleh.yarema@lnu.edu.ua 
700 1 |a Khomenko Yevheniy  |u Department of Physics, Kherson State University, 73008 Kherson, Ukraine; yekhomenko@ksu.ks.ua (Y.K.); dsenchishen@ksu.ks.ua (D.S.) 
700 1 |a Senchyshen Denys  |u Department of Physics, Kherson State University, 73008 Kherson, Ukraine; yekhomenko@ksu.ks.ua (Y.K.); dsenchishen@ksu.ks.ua (D.S.) 
700 1 |a Durnyak Bohdan  |u Department of Computer Technologies in Publishing and Printing Processes, Printing Art and Media Technologies Institute, Lviv Polytechnic National University, 79000 Lviv, Ukraine; bohdan.v.durnyak@lpnu.ua 
773 0 |t Sensors  |g vol. 25, no. 17 (2025), p. 5336-5356 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249714496/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3249714496/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249714496/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch