Radio Signal Recognition Using Two-Stage Spatiotemporal Network with Bispectral Analysis

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Sensors vol. 25, no. 17 (2025), p. 5449-5468
المؤلف الرئيسي: Bai Hongmei
مؤلفون آخرون: Li, Siming, Jia, Yong, Bowen, Xiao
منشور في:
MDPI AG
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text + Graphics
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3249714661
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s25175449  |2 doi 
035 |a 3249714661 
045 2 |b d20250101  |b d20251231 
084 |a 231630  |2 nlm 
100 1 |a Bai Hongmei  |u College of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China; 202201130113@cudt.edu.cn (H.B.); jiayong2014@cdut.edu.cn (Y.J.); 202320030123@cudt.edu.cn (B.X.) 
245 1 |a Radio Signal Recognition Using Two-Stage Spatiotemporal Network with Bispectral Analysis 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the rapid proliferation of unmanned aerial vehicles (UAVs), reliable identification based on radio frequency (RF) signals has become increasingly important for both civilian and security applications. This paper proposes a spatiotemporal feature extraction and classification framework based on bispectral analysis. Specifically, bispectral estimation is used to convert one-dimensional RF signals into two-dimensional bispectrum feature maps that capture higher-order spectral characteristics and nonlinear dependencies. Based on these characteristics, a two-stage network was constructed for spatiotemporal feature extraction and classification. The first stage utilizes a ResNet18 network to extract spatial structural features from individual bispectrum maps. The second stage employs an LSTM network to learn temporal dependencies across the sequence of bispectrum maps, capturing the continuity and evolution of signal characteristics over time. The experimental results on a public dataset of UAV RF signals show that this method improves recognition accuracy by 6.78% to 13.89% compared to other existing methods across five categories of UAVs. 
653 |a Unmanned aerial vehicles 
653 |a Accuracy 
653 |a Methods 
653 |a Deep learning 
653 |a Wavelet transforms 
653 |a Fourier transforms 
653 |a Radio frequency 
653 |a Identification 
653 |a Signal processing 
653 |a Classification 
700 1 |a Li, Siming  |u School of Computer and Cyber Security, Chengdu University of Technology, Chengdu 610059, China 
700 1 |a Jia, Yong  |u College of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China; 202201130113@cudt.edu.cn (H.B.); jiayong2014@cdut.edu.cn (Y.J.); 202320030123@cudt.edu.cn (B.X.) 
700 1 |a Bowen, Xiao  |u College of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China; 202201130113@cudt.edu.cn (H.B.); jiayong2014@cdut.edu.cn (Y.J.); 202320030123@cudt.edu.cn (B.X.) 
773 0 |t Sensors  |g vol. 25, no. 17 (2025), p. 5449-5468 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249714661/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3249714661/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249714661/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch