TCIE-Net: Physics-Guided Neural Networks for Tropical Cyclone Intensity Estimation

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Tropical Meteorology vol. 31, no. 4 (Aug 2025), p. 396-406
Autor principal: Tian, Wei
Otros Autores: Xu, Hai-Feng, Chen, Yuan-Yuan, Zhang, Yong-Hong, Wu, Li-Guang, Sian, Kenny Thiam Choy Lim Kam, Xiang, Chun-Yi
Publicado:
Guangzhou Institute of Tropical & Marine Meteorology
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3249924323
003 UK-CbPIL
022 |a 1006-8775 
024 7 |a 10.3724/j.1006-8775.2025.025  |2 doi 
035 |a 3249924323 
045 2 |b d20250801  |b d20250831 
084 |a 123710  |2 nlm 
100 1 |a Tian, Wei  |u School of Software, Nanjing University of Information Science and Technology, Nanjing 210044 China 
245 1 |a TCIE-Net: Physics-Guided Neural Networks for Tropical Cyclone Intensity Estimation 
260 |b Guangzhou Institute of Tropical & Marine Meteorology  |c Aug 2025 
513 |a Journal Article 
520 3 |a Accurate tropical cyclone (TC) intensity estimation is crucial for preventing and mitigating TC-related disasters. Despite recent advances in TC intensity estimation using convolutional neural networks (CNNs), existing techniques fail to adequately incorporate the priori knowledge of TCs. Therefore, information strongly correlated with TC intensity can be obscured by irrelevant data, limiting model performance. To address this challenge, we introduce the Convective-Stratiform Separation Technique, which acts as a physical constraint on the model, to extract pivotal features from the convective core in satellite infrared imagery. Concurrently, we propose a new dual-branch TC intensity estimation model, comprising a "Satellite Imagery Analysis Branch" to extract overall features from satellite imagery and a "Physics-Guided Branch" to analyze the identified convective cores. We further improve the estimation accuracy by incorporating key physical and environmental factors that are often overlooked by the model. We train the model on 1285 TC cases globally during 2003-2016 and evaluate the performance of best-optimized model using an independent test dataset of 95 TC cases globally from 2017. The results show that the root mean square error (RMSE) of TC intensity estimation is 8.13 kt, demonstrating superior performance compared to existing deep learning models. 
653 |a Mean square errors 
653 |a Accuracy 
653 |a Datasets 
653 |a Deep learning 
653 |a Performance evaluation 
653 |a Cyclones 
653 |a Physics 
653 |a Artificial neural networks 
653 |a Hurricanes 
653 |a Satellite imagery 
653 |a Neural networks 
653 |a Infrared imagery 
653 |a Tropical cyclones 
653 |a Machine learning 
653 |a Estimation accuracy 
653 |a Environmental factors 
653 |a Remote sensing 
653 |a Tropical cyclone intensities 
653 |a Root-mean-square errors 
653 |a Knowledge 
653 |a Disasters 
653 |a Satellites 
653 |a Environmental 
700 1 |a Xu, Hai-Feng  |u School of Software, Nanjing University of Information Science and Technology, Nanjing 210044 China 
700 1 |a Chen, Yuan-Yuan  |u School of Software, Nanjing University of Information Science and Technology, Nanjing 210044 China 
700 1 |a Zhang, Yong-Hong  |u School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044 China 
700 1 |a Wu, Li-Guang  |u Fudan University, Shanghai 200433 China 
700 1 |a Sian, Kenny Thiam Choy Lim Kam 
700 1 |a Xiang, Chun-Yi 
773 0 |t Journal of Tropical Meteorology  |g vol. 31, no. 4 (Aug 2025), p. 396-406 
786 0 |d ProQuest  |t East & South Asia Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3249924323/abstract/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3249924323/fulltext/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3249924323/fulltextPDF/embedded/CH9WPLCLQHQD1J4S?source=fedsrch