Comparative analysis of deep learning models for effective denial of service (DoS) attack detection in network security

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Electrical Systems and Information Technology vol. 12, no. 1 (Dec 2025), p. 73
Hlavní autor: Mandela, Ngaira
Další autoři: Etyang, Felix
Vydáno:
Springer Nature B.V.
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3250170772
003 UK-CbPIL
022 |a 2314-7172 
024 7 |a 10.1186/s43067-025-00267-0  |2 doi 
035 |a 3250170772 
045 2 |b d20251201  |b d20251231 
100 1 |a Mandela, Ngaira  |u Open University of Kenya, School of Science and Technology, Nairobi, Kenya 
245 1 |a Comparative analysis of deep learning models for effective denial of service (DoS) attack detection in network security 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a In the rapidly evolving field of network security, Distributed Denial of Service (DDoS) attacks continue to be a critical threat, disrupting cyber services and incurring enormous financial and reputational losses. This research paper presents an extensive analysis of the different models of deep learning, including pretrained BERT, Recurrent Neural Network (RNN), Dense Neural Network (Dense), Bidirectional Long Short-Term Memory (Bi-LSTM), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), to evaluate their effectiveness in identifying DDoS attacks. The research fills the gap in applying deep learning models, specifically transformer-based models such as BERT, in structured network traffic data and compares their performance with sequence-based models on the CIC-DDoS2019 dataset. The models were evaluated against a dataset of benign and malicious traffic, using primary metrics: recall, precision, F1 score, and accuracy. Performance results show that models based on sequence, such as RNN, LSTM, and GRU, outperform in terms of capturing temporal relations in network traffic data, with the RNN performing best at 97.85% accuracy. The high performance is credited to a new preprocessing pipeline with adaptive temporal window selection and composite feature engineering, as well as architectural advances such as a variant of BERT and attention-augmented RNN variants. On the other hand, BERT, though effective in natural language processing, performed poorly within this structured data space, emphasising the need for model choice based on data properties. This research bridges an essential gap through a systematic comparison of these models and the addition of preprocessing and architectural advancements, providing real-world implications for the development of Network Intrusion Detection Systems (NIDSs) and the improvement of cybersecurity against DDoS attacks. 
653 |a Accuracy 
653 |a Deep learning 
653 |a Datasets 
653 |a Communications traffic 
653 |a Cybersecurity 
653 |a Architecture 
653 |a Internet of Things 
653 |a Intrusion detection systems 
653 |a Machine learning 
653 |a Preprocessing 
653 |a Neural networks 
653 |a Effectiveness 
653 |a Recurrent neural networks 
653 |a Structured data 
653 |a Taxonomy 
653 |a Denial of service attacks 
653 |a Natural language processing 
653 |a Literature reviews 
653 |a Algorithms 
653 |a Decision trees 
700 1 |a Etyang, Felix  |u Cochin University of Science and Technology, Division of Computer Science and Engineering, Kochi, India (GRID:grid.411771.5) (ISNI:0000 0001 2189 9308) 
773 0 |t Journal of Electrical Systems and Information Technology  |g vol. 12, no. 1 (Dec 2025), p. 73 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3250170772/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3250170772/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3250170772/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch