A New Version of the Compound Quasi-Lomax Model: Properties, Characterizations and Risk Analysis under the U.K. Motor Insurance Claims Data

Guardat en:
Dades bibliogràfiques
Publicat a:Pakistan Journal of Statistics and Operation Research vol. 21, no. 3 (2025), p. 341-363
Autor principal: Hashim, Mujtaba
Altres autors: Butt, Nadeem S, Hamedani, G G, Ibrahim, Mohamed, Al-Nefaie, Abdullah H, AboAlkhair, Ahmad M, Yousof, Haitham M
Publicat:
University of the Punjab, College of Statistical & Actuarial Science
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3250458236
003 UK-CbPIL
022 |a 1816-2711 
022 |a 2220-5810 
024 7 |a 10.18187/pjsor.v21i3.4494  |2 doi 
035 |a 3250458236 
045 2 |b d20250701  |b d20250930 
084 |a 154929  |2 nlm 
100 1 |a Hashim, Mujtaba  |u Department of Quantitative Methods, college of Business, King Faisal University, Al Ahsa 31982, Saudi Arabia 
245 1 |a A New Version of the Compound Quasi-Lomax Model: Properties, Characterizations and Risk Analysis under the U.K. Motor Insurance Claims Data 
260 |b University of the Punjab, College of Statistical & Actuarial Science  |c 2025 
513 |a Journal Article 
520 3 |a This paper introduces a new lifetime distribution, the Compound Quasi-Lomax (CQLx) model, designed to enhance the modeling of heavy-tailed data in actuarial and financial risk analysis. The CQLx distribution is developed through a novel extension of the Lomax family, offering increased flexibility in capturing extreme values and complex data behaviors. Key mathematical properties are derived. Characterization of the model is achieved via truncated moments and the reverse hazard function. Several estimation methods are employed including the Maximum Likelihood Estimation (MLE), Cramér-von Mises (СУМ), Anderson-Darling Estimation (ADE), Right-Tail Anderson-Darling Estimation (RTADE), and Left-Tail Anderson-Darling Estimation (LTADE). A comprehensive simulation study evaluates the performance of these methods in terms of bias and root mean square error (RMSE) across various sample sizes. Risk measures such as Value-at-Risk (VaR), Tail Value-at-Risk (TVaR), Tail Variance (TV), Tail Mean Variance (TMV), and Expected Loss (EL) are computed under artificial and real financial insurance claims data. The results demonstrate that MLE generally provides the most accurate and stable estimates, particularly for larger samples, while CVM and ADE tend to overestimate risk, especially at higher quantiles. The CQLx model shows superior performance in fitting extreme claim-size data, making it a robust tool for risk management. 
653 |a Maximum likelihood estimation 
653 |a Risk management 
653 |a Performance evaluation 
653 |a Insurance claims 
653 |a Insurance 
653 |a Risk analysis 
653 |a Root-mean-square errors 
653 |a Extreme values 
653 |a Risk assessment 
653 |a Survival analysis 
653 |a Parameter estimation 
653 |a Insurance industry 
700 1 |a Butt, Nadeem S  |u Department of Family and Community Medicine, King Abdul Aziz University, Jeddah, Kingdom of Saudi Arabia 
700 1 |a Hamedani, G G  |u Department of Mathematical and Statistical Sciences, Marquette University, USA 
700 1 |a Ibrahim, Mohamed  |u Department of Quantitative Methods, college of Business, King Faisal University, Al Ahsa 31982, Saudi Arabia 
700 1 |a Al-Nefaie, Abdullah H  |u Department of Quantitative Methods, college of Business, King Faisal University, Al Ahsa 31982, Saudi Arabia 
700 1 |a AboAlkhair, Ahmad M 
700 1 |a Yousof, Haitham M 
773 0 |t Pakistan Journal of Statistics and Operation Research  |g vol. 21, no. 3 (2025), p. 341-363 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3250458236/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3250458236/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch